1. |
2. Synthesis of a Cu/ZnO Nanocomposite by Electroless Plating for the Catalytic Conversion of CO2 to MethanolMaja Pori, Iztok Arčon, Marjan Marinšek, Goran Dražić, Blaž Likozar, Zorica Crnjak Orel, Damjan Lašič Jurković, 2019, original scientific article Abstract: The process of methanol synthesis based on the hydrogenation of CO2
was investigated over binary Cu/ZnO catalyst materials,
prepared by applying a novel electroless plating fabrication method. The activity of the produced catalytic samples
was determined at temperature range between 200 and 300 °C and the feedstock conversion data were supplemented with
a detailed microstructure analysis using high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction
(XRD) and Cu and Zn K-edge, X-ray absorption near-edge structure (XANES) measurements and extended X-ray
absorption fine-structure (EXAFS) measurements. It was confirmed that the disorder in the Cu crystallites created unique
geometrical situations, which acted as the additional reactive centres for the adsorption of the reactant molecule species.
Copper and zinc structural synergy (spill-over) was also demonstrated as being crucial for the carbon dioxide’s activation.
EXAFS and XANES results provide strong evidence for surface alloying between copper and zinc and thus the present results
demonstrate new approach applicable for explaining metal–support interactions. Found in: ključnih besedah Summary of found: ...EXAFS, CuZn alloy, Spillover mechanism, CO2 valorization, Electroless deposition method, Heterogeneous
catalysis... Keywords: EXAFS, CuZn alloy, Spillover mechanism, CO2 valorization, Electroless deposition method, Heterogeneous
catalysis Published: 12.04.2019; Views: 2845; Downloads: 0
Fulltext (1,92 MB) |
3. Effect of Na, Cs and Ca on propylene epoxidation selectivity over CuOx/SiO2 catalysts studied by catalytic tests, in-situ XAS and DFTJanvit Teržan, Matej Huš, Iztok Arčon, Blaž Likozar, Petar Djinović, 2020, original scientific article Abstract: This research focuses on epoxidation of propylene over pristine, Na, Ca and Cs modified
CuOx/SiO2 catalysts using O2. The selectivity of the reaction is analyzed using a combination
of catalytic tests, in-situ XAS and DFT calculations. The initially present subnanometer CuO
clusters are present in all catalysts which re-disperse/flatten during reaction. During catalytic
reaction, the Cu1+ becomes the predominant oxidation state. There is no correlation between
propylene oxide (PO) selectivity and copper oxidation state. DFT analysis of the propylene
reaction pathway revealed that Na, Cs, and Ca addition decreases the bonding strength of
propylene to CuO and decreases the O2 activation barrier, while simultaneously increase the
exothermicity of O2 dissociation. The Na induced Cu-O bond modification decreases the
activation barrier from 0.87 to 0.71 eV for the oxametallacycle (OMC) ring closure (first step
in the reaction pathway favoring selectivity towards PO) compared to pristine 5Cu catalyst.
At the same time, we observed an increase (from 0.45 to 0.72 eV) of the barrier for the
abstraction of allylic hydrogen. The opposite effect is achieved by Ca addition: the activation
barrier for OMC ring closure increases to 1.08 eV and that for allylic hydrogen stripping
decreases to 0.16 eV. Found in: ključnih besedah Summary of found: ...Alkali modification, propylene epoxidation, reaction mechanism, copper oxide,
activation barrier.... Keywords: Alkali modification, propylene epoxidation, reaction mechanism, copper oxide, activation barrier. Published: 05.06.2020; Views: 2100; Downloads: 0
Fulltext (22,78 MB) |
4. Antibiotics and their different application strategies in controlling the biofilm forming pathogenic bacteriaFazlurrahman Khan, Dung T N Pham, Sandra Oloketuyi, Young-Mog Kim, 2020, review article Abstract: Background: The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment.
Methods: Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm.
Results: Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier.
Conclusion: The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria. Found in: ključnih besedah Summary of found: ...biofilm inhibition, multiple antibiotics, pathogenic bacteria, resistance mechanism, virulence factors... Keywords: Antibiotics, biofilm inhibition, multiple antibiotics, pathogenic bacteria, resistance mechanism, virulence factors Published: 14.01.2021; Views: 1730; Downloads: 0
Fulltext (2,61 MB) |