Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
2.
Microfluidic flow injection thermal lens microscopy for high throughput and sensitive analysis of sub-μL samples
Mingqiang Liu, Sara Malovrh, Mladen Franko, 2016, original scientific article

Abstract: An analytical method combining microfluidic flow injection analysis (μFIA) with thermal lens microscopy (TLM) was developed for high throughput and sensitive analysis of sub-μL samples. Performance of the μFIA-TLM was validated for detection of hexavalent chromium [Cr(VI)] in water samples. At different sample injection volumes, detection positions and flow rates, influences of the reaction time and the diffusion of Cr-diphenylcarbazone (DPCO) complexes on the μFIA-TLM signal were investigated. Photodegradation of the Cr-DPCO complex was clearly observed when the absorbed photons per Cr-DPCO is above 1600. After optimization of the TLM with respect to rapid flows (up to 10 cm/s), we achieved a limit of detection of 0.6 ng/mL for Cr(VI) in a 50-μm deep channel. Impacts of interfering ions [V(V), Mo(VI), Fe(III)] on the Cr(VI) determination were found to be small. Cr(VI) in real samples from a cement factory were determined and found in good agreement with results of spectrophotometry. This μFIA-TLM shows advantages over its conventional counterpart, such as eliminating additional sample conditioning, reducing over 100 times the sample consumption to sub-μL and over 10 times the time required for one sample injection to a few seconds (up to 20 samples/min). The optimized μFIA-TLM setup can be applied for fast and sensitive analysis of nonfluoresent sub-μL samples in rapidly flowing mediums.
Keywords: Spektrometrija TLS, mikroskopija TLM, mikrofluidika, krom (VI)
Published in RUNG: 01.06.2016; Views: 5372; Downloads: 273
.pdf Full text (828,33 KB)

Search done in 0.01 sec.
Back to top