11. Study on multi-ELVES in the Pierre Auger ObservatoryA. Vásquez Ramírez, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: Since 2013, the four sites of the Fluorescence Detector (FD) of the Pierre Auger Observatory record ELVES with a dedicated trigger. These UV light emissions are correlated to distant lightning strikes. The length of recorded traces has been increased from 100 μs (2013), to 300 μs (2014-16), to 900 μs (2017-present), to progressively extend the observation of the light emission towards the vertical of the causative lightning and beyond. A large fraction of the observed events shows double ELVES within the time window, and, in some cases, even more complex structures are observed. The nature of the multi-ELVES is not completely understood but may be related to the different types of lightning in which they are originated. For example, it is known that Narrow Bipolar Events can produce double ELVES, and Energetic In-cloud Pulses, occurring between the main negative and upper positive charge layer of clouds, can induce double and even quadruple ELVES in the ionosphere. This report shows the seasonal and daily dependence of the time gap, amplitude ratio, and correlation between the pulse widths of the peaks in a sample of 1000+ multi-ELVES events recorded during the period 2014-20. The events have been compared with data from other satellite and ground-based sensing devices to study the correlation of their properties with lightning observables such as altitude and polarity. Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, UV light, multi-ELVES, lightning Published in RUNG: 03.10.2023; Views: 2187; Downloads: 6
Full text (1,25 MB) This document has many files! More... |
12. The Cherenkov Telescope Array transient and multi-messenger programAlessandro Carosi, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, published scientific conference contribution Abstract: The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprece-dented photon statistics and sensitivity. This will enable the investigation of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instru-ment for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS 0506+056 have shown the importance of coordinated follow-up observations triggered by these di˙erent cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large e˙ective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not a˙ected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Tran-sients physics working group to perform the study of transient sources in the very-high-energy regime. Keywords: Cherenkov Telescope Array, very-high-energy gamma-rays, CTA Transient program, multi-wavelength astronomy, multi-messenger astronomy Published in RUNG: 18.09.2023; Views: 2363; Downloads: 8
Full text (1,63 MB) This document has many files! More... |
13. Low-luminosity jetted AGN as particle multi-messenger sourcesAnita Reimer, Margot Boughelilba, Lukas Merten, Paolo Da Vela, Jon Paul Lundquist, Serguei Vorobiov, 2023, published scientific conference contribution abstract Abstract: The detection of cosmic gamma rays, high-energy neutrinos and cosmic rays (CRs) signal the existence of environments in the Universe that allow particle acceleration to extremely high energies. These observable signatures from putative CR sources are the result of in-source acceleration of particles, their energy and time-dependent transport including interactions in an evolving environment and their escape from source, in addition to source-to-Earth propagation.
Low-luminosity AGN jets constitute the most abundant persistent jet source population in the local Universe. The dominant subset of these, Fanaroff-Riley 0 (FR0) galaxies, have recently been proposed as sources contributing to the ultra-high-energy cosmic ray (UHECR) flux observed on Earth. This presentation assesses the survival, workings and multi-messenger signatures of UHECRs in low-luminosity jet environments, with focus on FR0 galaxies. For this purpose we use our recently developed, fully time-dependent CR particle and photon propagation framework which takes into account all relevant secondary production and energy loss processes, allows for an evolving source environment and efficient treatment of transport non-linearities due to the produced particles/photons being fed back into the simulation chain.
Finally, we propagate UHE cosmic-ray nuclei and secondary cosmogenic photons and neutrinos from FR0 galaxies to Earth for several extragalactic magnetic field scenarios using the CRPropa3 framework, and confront the resulting energy spectra and composition on Earth with the current observational situation. Keywords: multi-messenger astrophysics, ultra-high-energy cosmic rays, very-high-energy gamma-rays Published in RUNG: 13.09.2023; Views: 2648; Downloads: 10
Link to file This document has many files! More... |
14. |
15. Multi-objective uncapacitated facility location problem with customers’ preferences: Pareto-based and weighted sum GA-based approachesSoumen Atta, Priya Ranjan Sinha Mahapatra, Anirban Mukhopadhyay, 2019, original scientific article Abstract: The uncapacitated facility location problem (UFLP) is a well-known combinatorial optimization problem having single-objective function. The objective of UFLP is to find a subset of facilities from a given set of potential facility locations such that the sum of the opening costs of the opened facilities and the service cost to serve all the customers is minimized. In traditional UFLP, customers are served by their nearest facilities. In this article, we have proposed a multi-objective UFLP where each customer has a preference for each facility. Hence, the objective of the multi-objective UFLP with customers’ preferences (MOUFLPCP) is to open a subset of facilities to serve all the customers such that the sum of the opening cost and service cost is minimized and the sum of the preferences is maximized. In this article, the elitist non-dominated sorting genetic algorithm II (NSGA-II), a popular Pareto-based GA, is employed to solve this problem. Moreover, a weighted sum genetic algorithm (WSGA)-based approach is proposed to solve MOUFLPCP where conflicting two objectives of the problem are aggregated to a single quality measure. For experimental purposes, new test instances of MOUFLPCP are created from the existing UFLP benchmark instances and the experimental results obtained using NSGA-II and WSGA-based approaches are demonstrated and compared for these newly created test instances. Keywords: Uncapacitated facility location problem (UFLP), Multi-objective UFLP with customers’ preferences (MOUFLPCP), NSGA-II, Weighted sum genetic algorithm (WSGA) Published in RUNG: 17.04.2023; Views: 2203; Downloads: 0 This document has many files! More... |
16. A multi-objective formulation of maximal covering location problem with customers’ preferences: Exploring Pareto optimality-based solutionsSoumen Atta, Priya Ranjan Sinha Mahapatra, Anirban Mukhopadhyay, 2021, original scientific article Abstract: The maximal covering location problem (MCLP) is a well-known combinatorial optimization problem with several applications in emergency and military services as well as in public services. Traditionally, MCLP is a single objective problem where the objective is to maximize the sum of the demands of customers which are served by a fixed number of open facilities. In this article, a multi-objective MCLP is proposed where each customer has a preference for each facility. The multi-objective MCLP with customers’ preferences (MOMCLPCP) deals with the opening of a fixed number of facilities from a given set of potential facility locations and then customers are assigned to these opened facilities such that both (i) the sum of the demands of customers and (ii) the sum of the preferences of the customers covered by these opened facilities are maximized. A Pareto-based multi-objective harmony search algorithm (MOHSA), which utilizes a harmony refinement strategy for faster convergence, is proposed to solve MOMCLPCP. The proposed MOHSA is terminated based on the stabilization of the density of non-dominated solutions. For experimental purposes, 82 new test instances of MOMCLPCP are generated from the existing single objective MCLP benchmark data sets. The performance of the proposed MOHSA is compared with the well-known non-dominated sorting genetic algorithm II (NSGA-II), and it has been observed that the proposed MOHSA always outperforms NSGA-II in terms of computation time. Moreover, statistical tests show that the objective values obtained from both algorithms are comparable. Keywords: Maximal covering location problem (MCLP), Multi-objective MCLP, Customers’ preferences, Multi-objective harmony search algorithm (MOHSA), NSGA II, CPLEX Published in RUNG: 17.04.2023; Views: 2077; Downloads: 0 This document has many files! More... |
17. Investigation of the effective transmittance of Mach-Zehnder interferometer in the multi-longitudinal-mode high-spectral-resolution lidarFei Gao, Fengjia Gao, Xiao Yang, Gaipan Li, Li Wang, Meng Wang, Dengxin Hua, Griša Močnik, Samo Stanič, 2022, original scientific article Abstract: Effective transmittance is an important parameter of Mach-Zehnder interferometer in the retrieval of aerosol optical properties using the multi-longitudinal-mode high-spectral-resolution lidar, which is a function of the complex degree of coherence. In this paper, we retrieve the parameter of the complex degree of coherence for the multi-longitudinal-mode laser from the theoretical analysis, optical simulation and experimental measurements, which are 0.726, 0.678 and 0.453 using the Mach-Zehnder interferometer with the optimal optical path difference of two times of laser optical cavity length (∼1000 mm) and under the light illumination of the high power Nd:YAG laser with the mode number of 101 and mode interval of 300 MHz under the condition of laser linewidth of 1 cm−1 (30 GHz). The preliminary measurement results of aerosol optical properties using the constructing multi-longitudinal-mode high-spectral-resolution lidar show that the difference of the complex degree of coherence retrieved from the presented methods results in the relative error of 40% in the aerosol backscattering coefficient with thin cloud layer and 90% with the presence of dense aerosol layer. Keywords: effective transmittance, Mach-Zehnder interferometer, Multi-logitudinal-mode laser, High-spectral-resolution lidar Published in RUNG: 20.09.2022; Views: 3035; Downloads: 0 This document has many files! More... |
18. Order fluctuation induced tunable light emission from carbon nano systemMohanachandran Nair Sindhu Swapna, Sankararaman S, 2019, original scientific article Abstract: The paper reports the thermal-induced order fuctuations, in a carbon nanosystem with carbon nanotubes (CNTs) synthesized
by the incomplete combustion of gingelly oil. The sample annealed at diferent temperatures (30–400 °C) is subjected to
various morphological and spectroscopic characterizations. The ultraviolet–visible spectroscopic and thermogravimetric
analyses reveal the CNTs in the sample. The high-resolution transmission electron microscopy (HR-TEM) also confrms the
formation of CNTs in the sample. The Raman spectrum and X-ray difraction pattern show the signature of multi-walled
to single-walled CNT transformation and thus an order fuctuation on annealing. The quantum yield of the sample, measured by integrating sphere method, yields 46.15% at an emission wavelength of 575 nm. When the excitation wavelength
is varied from 350 to 510 nm, the CIE coordinate moves from the white region to the yellowish-green region. The varying
amount of CNTs in the soot, upon annealing is found to vary the luminescence emission from the sample. The study reveals
the thermal-induced oscillatory order in carbon nanosystem with carbon nanotubes (CNTs) leading to tunable excitation/
thermal-dependent luminescence emission and thereby suggesting the possibility of converting the futile soot for fruitful
applications in photonics and nanoelectronics. Keywords: Carbon nanosystem, Single-walled carbon nanotubes, Multi-walled carbon nanotubes, Raman spectroscopy, Thermogravimetric analysis, CIE plot, Quantum yield, gingelly oil Published in RUNG: 05.07.2022; Views: 2580; Downloads: 0 This document has many files! More... |
19. Multi-messenger studies with the Pierre Auger ObservatoryLukas Zehrer, Andrej Filipčič, Gašper Kukec Mezek, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Marko Zavrtanik, Danilo Zavrtanik, 2021, published scientific conference contribution Abstract: Over the past decade the multi-messenger astrophysics has emerged as a distinct discipline,
providing unique insights into the properties of high-energy phenomena in the Universe. The
Pierre Auger Observatory, located in Malargüe, Argentina, is the world’s largest cosmic ray
detector sensitive to photons, neutrinos, and hadrons at ultra-high energies. Using its data, stringent
limits on photon and neutrino fluxes at EeV energies have been obtained. The collaboration uses
the excellent angular resolution and the neutrino identification capabilities of the Observatory
for follow-up studies of events detected in gravitational waves or other messengers, through
cooperation with global multi-messenger networks. We present a science motivation together
with an overview of the multi-messenger capabilities and results of the Pierre Auger Observatory. Keywords: high-energy cosmic phenomena, multi-messenger astrophysical studies, cosmic rays, gamma-rays, neutrinos, Pierre Auger Observatory Published in RUNG: 06.05.2022; Views: 2709; Downloads: 0 This document has many files! More... |
20. Multi-messenger astrophysics with THESEUS in the 2030sRiccardo Ciolfi, Giulia Stratta, Marica Branchesi, Bruce Gendre, Stefan Grimm, Jan Harms, Gavin Paul Lamb, Antonio Martin-Carrillo, Ayden McCann, Andreja Gomboc, 2021, original scientific article Keywords: multi-messenger astrophysics, Gamma-ray bursts, compact binary merger, Kilonova Published in RUNG: 02.11.2021; Views: 3082; Downloads: 0 This document has many files! More... |