Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 5 / 5
First pagePrevious page1Next pageLast page
1.
Measurement of the muon content in air showers at the Pierre Auger Observatory
Marko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Laura Collica, 2015, published scientific conference contribution

Abstract: The muon content of extensive air showers is an observable sensitive to the primary composition and to the hadronic interaction properties. We present here different methods which allow us to estimate the muon number at the ground level and the muon production depth by exploiting the measurement of the longitudinal, lateral and temporal distribution of particles in air showers recorded at the Pierre Auger Observatory. The results, obtained at about 10[sup]19 eV (E[inf]CM ∼ 140 TeV center-of-mass energy for proton primaries), are compared to the predictions of LHC-tuned hadronic interaction models with different primary masses and suggest a deficit in the muon content at the ground predicted by simulations. The Pierre Auger Observatory uses water-Cherenkov detectors to measure particle densities at the ground and therefore has a good sensitivity to the muon content of air showers. Moreover, due to its hybrid design, the combination of muon measurements with other independent mass composition analyses such as Xmax provides additional constraints on hadronic interaction models.
Found in: ključnih besedah
Summary of found: ...Pierre Auger Observatory, ultra-high energy cosmic rays, muons, mass composition, hadronic interactions...
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, muons, mass composition, hadronic interactions
Published: 03.03.2016; Views: 3927; Downloads: 212
.pdf Fulltext (298,46 KB)

2.
The AMIGA Muon Counters of the Pierre Auger Observatory: Performance and Studies of the Lateral Distribution Function
Marko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Brian Wundheiler, 2015, published scientific conference contribution

Abstract: The AMIGA enhancement (Auger Muons and Infill for the Ground Array) of the Pierre Auger Observatory consists of a 23.5 km2 infill area where air shower particles are sampled by water- Cherenkov detectors at the surface and by 30 m2 scintillation counters buried 2.3 m underground. The Engineering Array of AMIGA, completed since February 2015, includes 37 scintillator modules (290 m2) in a hexagonal layout. In this work, the muon counting performance of the scintillation detectors is analysed over the first 20 months of operation. Parametrisations of the detector counting resolution and the lateral trigger probability are presented. Finally, preliminary results on the observed muon lateral distribution function (LDF) are discussed.
Found in: ključnih besedah
Summary of found: ...The AMIGA enhancement (Auger Muons and Infill for the Ground Array) of the...
Keywords: Pierre Auger Observatory, AMIGA (Auger Muons and Infill for the Ground Array) muon counters, muon lateral distribution function (LDF)
Published: 03.03.2016; Views: 3473; Downloads: 174
.pdf Fulltext (499,33 KB)

3.
Measurement of the water-Cherenkov detector response to inclined muons using an RPC hodoscope
Marko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Pedro Assis, 2015, published scientific conference contribution

Abstract: The Pierre Auger Observatory operates a hybrid detector composed of a Fluorescence Detector and a Surface Detector array. Water-Cherenkov detectors (WCD) are the building blocks of the array and as such play a key role in the detection of secondary particles at the ground. A good knowledge of the detector response is of paramount importance to lower systematic uncertainties and thus to increase the capability of the experiment in determining the muon content of the extensive air showers with a higher precision. In this work we report on a detailed study of the detector response to single muons as a function of their trajectories in the WCD. A dedicated Resistive Plate Chambers (RPC) hodoscope was built and installed around one of the detectors. The hodoscope is formed by two stand-alone low gas flux segmented RPC detectors with the test water-Cherenkov detector placed in between. The segmentation of the RPC detectors is of the order of 10 cm. The hodoscope is used to trigger and select single muon events in different geometries. The signal recorded in the water-Cherenkov detector and performance estimators were studied as a function of the trajectories of the muons and compared with a dedicated simulation. An agreement at the percent level was found, showing that the simulation correctly describes the tank response.
Found in: ključnih besedah
Keywords: Pierre Auger Observatory, Water-Cherenkov detectors, detector calibration, inclined cosmic ray muons, Resistive Plate Chambers (RPC) hodoscope
Published: 03.03.2016; Views: 4013; Downloads: 192
.pdf Fulltext (1,27 MB)

4.
5.
Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope Array experiment
J. P. Lundquist, R.U. Abbasi, 2018, original scientific article

Abstract: One of the uncertainties in the interpretation of ultrahigh energy cosmic ray data comes from the hadronic interaction models used for air shower Monte Carlo (MC) simulations. The number of muons observed at the ground from ultrahigh energy cosmic ray–induced air showers is expected to depend upon the hadronic interaction model. One may therefore test the hadronic interaction models by comparing the measured number of muons with the MC prediction. In this paper, we present the results of studies of muon densities in ultrahigh energy extensive air showers obtained by analyzing the signal of surface detector stations which should have high muon purity. The muon purity of a station will depend on both the inclination of the shower and the relative position of the station. In seven years’ data from the Telescope Array experiment, we find that the number of particles observed for signals with an expected muon purity of ∼65% at a lateral distance of 2000 m from the shower core is 1.72± 0.10(stat)±0.37(syst) times larger than the MC prediction value using the QGSJET II-03 model for proton-induced showers. A similar effect is also seen in comparisons with other hadronic models such as QGSJET II-04, which shows a 1.67±0.10±0.36 excess. We also studied the dependence of these excesses on lateral distances and found a slower decrease of the lateral distribution of muons in the data as compared to the MC, causing larger discrepancy at larger lateral distances.
Found in: ključnih besedah
Keywords: UHECR, cosmic rays, muons, particle physics
Published: 30.04.2020; Views: 1857; Downloads: 0
.pdf Fulltext (2,16 MB)

Search done in 0 sec.
Back to top