Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 9 / 9
First pagePrevious page1Next pageLast page
1.
Development of electronics speckle interferometric weight sensor
V. Aswathy Gopal, Abin Oscar, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, 2024, published scientific conference contribution

Keywords: speckle, weight sensor, electronics speckle pattern interferometry
Published in RUNG: 15.04.2024; Views: 725; Downloads: 0
.pdf Full text (1,43 MB)
This document has many files! More...

2.
3.
Speckle interferometric investigation of argon pressure-induced surface roughness modifications in RF-sputtered MoO[sub]3 film
S. Soumya, R. Arun Kumar, S. Sreejyothi, Vimal Raj, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, 2021, original scientific article

Abstract: Film quality analysis is of more considerable signifcance due to its diversifed applications in various felds of technology. The present work reports the speckle interferometric analysis of the argon pressure-induced surface roughness modifcations of RF sputtered MoO3 flms. The paper suggests a new method of surface quality analysis of thin flms through a parameter δ, which is the diference between the initial and fnal inertia moment values in the study of the thermal-induced dynamic speckle pattern. The limitations of root mean square surface roughness analysis of the atomic force microscopic image of the flms is also exemplifed. The research suggests that argon pressure plays a vital role in the surface property of RF sputtered flms and also that the dynamic speckle analysis can give precise information about the quality of flms. The contour plot of particle displacement vector under thermal stress, suggests the degree of uniformity in the distribution of particles in the flm.
Keywords: speckle pattern interferometry, time history of speckle pattern, cross correlation, inertia moment
Published in RUNG: 04.07.2022; Views: 1465; Downloads: 0
This document has many files! More...

4.
5.
Search for ultra-high-energy neutrinos with the Telescope Array surface detector
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: We present an upper limit on the flux of ultra-high-energy down-going neutrinos for E > 10^18 eV derived with the nine years of data collected by the Telescope Array surface detector (05-11-2008– 05-10-2017). The method is based on the multivariate analysis technique, so-called Boosted Decision Trees (BDT). Proton-neutrino classifier is built upon 16 observables related to both the properties of the shower front and the lateral distribution function.
Keywords: neutrinos, pattern recognition, UHECR, cosmic rays
Published in RUNG: 29.04.2020; Views: 3281; Downloads: 76
URL Link to full text
This document has many files! More...

6.
Cosmic Ray Shower Profile Track Finding for Telescope Array Fluorescence Detectors
Jon Paul Lundquist, 2016, published scientific conference contribution

Abstract: A simple cosmic ray track finding pattern recognition analysis (PRA) method for fluorescence detectors (FD) has been developed which significantly improves Xmax resolution and its dependence on energy. Events which have a clear rise and fall in the FD view contain information on Xmax that can be reliably reconstructed. Shower maximum must be extrapolated for events with Xmax outside the field of view of the detector, which creates a systematic dependence on the fitting function. The PRA method is a model and detector independent approach to removing these events, by fitting shower profiles to a set of triangles and applying limits on the allowable geometry.
Keywords: UHECR, cosmic rays, fluorescence detector, track finding, pattern recognition
Published in RUNG: 29.04.2020; Views: 3144; Downloads: 108
.pdf Full text (1,59 MB)

7.
Spin and orbital configuration of metal phthalocyanine chains assembled on the Au(110) surface
Gargiani Pierluigi, Giorgio Rossi, Roberto Biagi, Valdis Corradini, Maddalena Pedio, Sara Fortuna, Arrigo Calzolari, Stefano Fabris, Julio Criginski Cezar, N. B. Brookes, Maria Grazia Betti, 2013, original scientific article

Abstract: The spin and orbital configuration of magnetic metal phthalocyanines (MPcs) deposited on metallic substrates are strongly influenced by the rehybridization of the molecular states with the underlying metal. FePc, CoPc, and CuPc isolated molecules are archetypal systems to investigate the interrelationship between magnetic moments and orbital symmetry after deposition on a metallic substrate. MPcs form long-range ordered chains self-assembled along the reconstructed channels of the Au(110) surface. X-ray magnetic circular dichroism from the L2,3 absorption edges of Fe, Co, and Cu shows that the orbital and spin configuration are strongly modified upon adsorption on the Au(110) surface if the orbitals responsible of the magnetic moment are involved in the interaction process. The magnetic moment for a single layer of molecular chains is completely quenched for the CoPc molecules, fully preserved for the CuPc and reduced for the FePc ones. The modified magnetic configuration is confined to the very interface layer, i.e., to the MPc molecules bound to the metal substrate up to the compact packing of the single layer. The different response can be rationalized in terms of the symmetry/orientation of the metal-ion d states interacting with the substrate states, as indicated by density functional theory calculations in agreement with experimental findings.
Keywords: phthalocyanine, Au(110), gold, self-assembly, pattern, configuration, density functional theory, DFT, CuPc, FePc
Published in RUNG: 12.10.2016; Views: 5020; Downloads: 0
This document has many files! More...

8.
Polymer Vesicles with a Colloidal Armor of Nanoparticles
Rong Chen, Daniel J. G. Pearce, Sara Fortuna, David L. Cheung, Stefan A. F. Bon, 2011, original scientific article

Abstract: The fabrication of polymer vesicles with a colloidal armor made from a variety of nanoparticles is demonstrated. In addition, it is shown that the armored supracolloidal structure can be postmodified through film-formation of soft polymer latex particles on the surface of the polymersome, hereby effectively wrapping the polymersome in a plastic bag, as well as through formation of a hydrogel by disintegrating an assembled polymer latex made from poly(ethyl acrylate-co-methacrylic acid) upon increasing the pH. Furthermore, ordering and packing patterns are briefly addressed with the aid of Monte Carlo simulations, including patterns observed when polymersomes are exposed to a binary mixture of colloids of different size.
Keywords: Pickering emultion, self-assemblt, Monte Carlo, simulation, nanoparticle, packing, pattern garnd canonical, colloids
Published in RUNG: 11.10.2016; Views: 5075; Downloads: 0
This document has many files! More...

9.
Real-time motor unit identification from high-density surface EMG
Vojko Glaser, Aleš Holobar, Damjan Zazula, 2013, original scientific article

Abstract: This study addresses online decomposition of high-density surface electromyograms (EMG) in real-time. The proposed method is based on previouslypublished Convolution Kernel Compensation (CKC) technique and sharesthe same decomposition paradigm, i.e. compensation of motor unit action potentials and direct identification of motor unit (MU) discharges. In contrast to previously published version of CKC, which operates in batch mode and requires ~ 10 s of EMG signal, the real-time implementation begins with batch processing of ~ 3 s of the EMG signal in the initialization stage and continues on with iterative updating of the estimators of MU discharges as blocks of new EMG samples become available. Its detailed comparison to previously validated batch version of CKC and asymptotically Bayesian optimal Linear Minimum Mean Square Error (LMMSE) estimator demonstrates high agreementin identified MU discharges among all three techniques. In the case of synthetic surface EMG with 20 dB signal-to-noise ratio, MU discharges were identified with average sensitivity of 98 %. In the case of experimental EMG, real-time CKC fully converged after initial 5 s of EMG recordings and real-time and batch CKC agreed on 90 % of MU discharges, on average. The real-time CKC identified slightly fewer MUs than its batch version (experimental EMG, 4 MUs versus 5 MUs identified by batch CKC, on average), but required only 0.6 s of processing time on regular personal computer for each second of multichannel surface EMG.
Keywords: discharge pattern, high-density EMG, surface EMG, motor unit, real time decomposition
Published in RUNG: 05.01.2016; Views: 5626; Downloads: 0

Search done in 0.04 sec.
Back to top