1.
Photoelectrochemical activation of peroxymonosulfate using Sn-doped ▫$α-Fe_2O_3$▫ thin film for degradation of anti-inflammatory pharmaceutical drugManel Machreki,
Georgi Tyuliev,
Dušan Žigon,
Qian Guo,
Takwa Chouki,
Ana Belén Jorge Sobrido,
Stoichko Dimitrov,
Saim Emin, 2024, original scientific article
Abstract: Introduction of oxygen vacancies (OVs) has been investigated as a promising way to improve the electrical and catalytic characteristics of a hematite (α-Fe2O3) based photoelectrode. In this work, we develop a novel method for preparing porous Sn-doped α-Fe2O3 (Sn:Fe2O3) thin films with intrinsic OVs. The procedure included spin- coating an iron precursor onto a fluorine-doped tin oxide (FTO) substrate, followed by thermal treatment at elevated temperatures. The influence of Sn dopant on the optoelectronic properties of α-Fe2O3 was demonstrated by X-ray photoelectron spectroscopy and photoelectrochemical (PEC) measurements. The combined effect of OVs and Sn doping was found to play a synergistic role in reducing the charge recombination’s. The Sn:Fe2O3 photoanodes were used as a dual catalyst to oxidise water and break down an anti-inflammatory drug called 2-(4- isobutylphenyl)propanoic acid (IBPA). The Sn:Fe2O3 thin film with a 30-minute heat treatment time displayed the highest incident photon-to-current efficiency. For the first time, Sn:Fe2O3 thin films were utilised in the effective PEC degradation of IBPA employing peroxymonosulfate (PMS) under visible light illumination. The hydroxyl radicals (•OH), singlet oxygen (1O2), photogenerated holes (h+), and sulfate radicals (SO4 • ) were discovered to be the main reactive species during PEC degradation. IBPA degradation and the formation of new compounds were verified using liquid chromatography-mass spectrometry. The Lepidium sativum L phytotoxicity test reveals that PEC-treated wastewater with IBPA exhibits decreased toxicity.
Keywords: Sn-doped Fe2O3, oxygen vacancies, photoelectrochemical degradation, 2-(4-isobutylphenyl)propanoic acid, peroxymonosulfate
Published in RUNG: 10.01.2024; Views: 1639; Downloads: 42
Full text (2,44 MB)
This document has many files! More...