Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
2.
Elucidation of Donor:Acceptor Phase Separation in Nonfullerene Organic Solar Cells and Its Implications on Device Performance and Charge Carrier Mobility
Sebastian F. Hoefler, Georg Haberfehlner, Thomas Rath, Andreas Keilbach, Mathias Hobisch, Alexander Dixon, Egon Pavlica, Gvido Bratina, Gerald Kothleitner, Ferdinand Hofer, Gregor Trimmel, 2019, original scientific article

Abstract: In bulk-heterojunction solar cells, the device performance strongly depends on the donor and acceptor properties, the phase separation in the absorber layer, and the formation of a bicontinuous network. While this phase separation is well explored for polymer:fullerene solar cells, only little is known for polymer:nonfullerene acceptor solar cells. The main hurdle in this regard is often the chemical similarity of the conjugated polymer donor and the organic nonfullerene acceptor (NFA), which makes the analysis of the phase separation via atomic force microscopic (AFM) phase images or conventional transmission electron microscopy difficult. In this work, we use the donor polymer PTB7-Th and the small molecule acceptor O-IDTBR as the model system and visualized the phase separation in PTB7-Th:O-IDTBR bulk-heterojunctions with different donor:acceptor ratios via scanning transmission electron microscopy (STEM) high-angle annular dark-field (HAADF) images and electron energy loss spectroscopy (EELS) based elemental mapping, which resulted in a good contrast between the donor and the acceptor despite very low differences in the chemical composition. AFM as well as grazing-incidence wide-angle X-ray scattering (GIWAXS) investigations support the electron microscopic data. Furthermore, we elucidate the implications of the phase separation on the device performance as well as charge carrier mobilities in the bulk-heterojunction layers, and a high performance of the solar cells was found over a relatively broad range of polymer domain sizes. This can be related to the larger domain sizes of the acceptor phase with higher amounts of O-IDTBR in the blend, while the polymer donor phase still forms continuous pathways to the electrode, which keeps the hole mobility at a relatively constant level.
Keywords: nanomorphology bulk-heterojunction scanning transmission electron microscopy organic photovoltaics charge carrier mobility
Published in RUNG: 15.01.2020; Views: 3792; Downloads: 91
.pdf Full text (6,22 MB)

3.
PHOTO-EXCITATION ENERGY INFLUENCE ON THE PHOTOCONDUCTIVITY OF ORGANIC SEMICONDUCTORS
Nadiia Pastukhova, 2018, doctoral dissertation

Abstract: In this work, we experimentally studied the influence of photoexcitation energy influence on the charge transport in organic semiconductors. Organic semiconductors were small molecules like corannulene, perylene and pentacene derivatives, polymers such as polythiophene and benzothiophene derivatives, and graphene, along with combinations of these materials in heterojunctions or composites. The first part of this study is focused on the photoexcitation energy influence on the transient photoconductivity of non-crystalline curved π-conjugated corannulene layers. The enhanced photoconductivity, in the energy range where optical absorption is absent, is deduced from theoretical predictions of corannulene gas-phase excited state spectra. Theoretical analysis reveals a consistent contribution involving transitions to Super Atomic Molecular Orbitals (SAMOs), a unique set of diffuse orbitals typical of curved π-conjugated molecules. More, the photoconductivity of the curved corannulene was compared to the π-conjugated planar N,N′-1H,1H- perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2), where the photoexcitation energy dependence of photocurrent closely follows the optical absorption spectrum. We next characterized charge transport in poly(3-hexylthiophene) (P3HT) layers deposited from solution. Our results indicate that time-of-flight (TOF) mobility depends on the photoexcitation energy. It is 0.4× 10 −3 cm 2 /Vs at 2.3 eV (530 nm) and doubles at 4.8 eV (260 nm). TOF mobility was compared to field-effect (FET) mobility of P3HT field-effect transistors (OFETs). The FET mobility was similar to the 2.3 eV excitation TOF mobility. In order to improve charge mobility, graphene nanoparticles were blended within a P3HT solution before the deposition. We found that the mobility significantly improves upon the addition of graphene nanoparticles of a weight ratio as low as 0.2 %. FET mobility increases with graphene concentration up to a value of 2.3× 10 −2 cm 2 /Vs at 3.2 %. The results demonstrate that phase segregation starts to influence charge transport at graphene concentration of 0.8 % and above. Hence, the graphene cannot form a bridged conduction channel between electrodes, which would cancel the semiconducting effect of the polymer composite. An alternative approach to enhance mobility is to optimize the molecular ordering of organic semiconductors. For that purpose, we studied an innovative nanomesh device. Free-standing nanomesh devices were used to form nanojunctions of N,N′- iiDioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires and crystalline bis(triisopropylsilylethinyl)pentacene (TIPS-PEN). We characterized the photocurrent response time of this novel nanomesh scaffold device. The photoresponse time depends on the photon energy. It is between 4.5 − 5.6 ns at 500 nm excitation wavelength and between 6.7 − 7.7 ns at 700 nm excitation wavelength. In addition, we found that thermal annealing reduces charge carrier trapping in crystalline nanowires. This confirms that the structural defects are crucial to obtaining high photon-to-charge conversion efficiency and subsequent transport from pn junction in heterostructured materials. Structural defects also influence the power conversion efficiency of organic heterostructured photovoltaics (OPVs). Anticipating that polymers with different backbone lengths produce different level of structural defects, we examined charge transport dependence on the molecular weight of poly[4,8-bis(5-(2- ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2- ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th) from 50 kDa to 300 kDa. We found p-type hopping transport in PTB7-Th, characterized by 0.1 – 3× 10 −2 cm 2 /Vs mobility, which increases with temperature and electric field. The polymer molecular weight exhibits a non-trivial influence on charge transport. FET mobility in the saturation regime increases with molecular weight. A similar trend is observed in TOF mobility and FET mobility in the linear regime, except for the 100kDa polymer, which manifests in the highest mobility due to reduced charge trapping. The lowest trapping at the dielectric interface of OFET is observed at 200 kDa. In addition, the 200 kDa polymer exhibits the lowest activation energy of the charge transport. Although the 100 kDa polymer indicates the highest mobility, OPVs using the 200 kDa polymer exhibit the best performance in terms of power conversion efficiency.
Keywords: organic semiconductors, optical absorption spectroscopy, time-of-flight photoconductivity, transient photocurrent spectroscopy, organic thin film transistors, atomic force microscopy, superatomic molecular orbitals, pn heterojunction, organic nanowires, graphene, composites, charge mobility, charge trapping, temperature dependence, photodetector, photovoltaic, solar cell, organic electronics
Published in RUNG: 08.10.2018; Views: 6753; Downloads: 170
.pdf Full text (4,56 MB)

Search done in 0.01 sec.
Back to top