Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
The Radio Detector of the Pierre Auger Observatory
J. R. Hörandel, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution

Abstract: To measure the properties of the highest-energy particles in the Universe with unprecedented precision, we have upgraded the Pierre Auger Observatory. A crucial component of this upgrade is the Radio Detector. Radio antennas have been added to all 1660 positions of the surface detector array, covering an area of 3000 sq. km. The antennas detect radio emission, emitted by extensive air showers in the frequency band from 30 to 80 MHz in two polarization directions - one parallel and one perpendicular to the Earth magnetic field. For inclined air showers with zenith angles above 60 degrees, the radio antennas provide a clean measurement of the electromagnetic shower component, while the water-Čerenkov detectors measure the muonic component. Large-scale deployment in the Argentinian Pampa Amarilla started around June 2023 and has been completed in 2024. The deployment is accompanied by extensive calibration efforts both, in the laboratory and in the field. The signal chain is characterized in the laboratory. Galactic radio emission is used as a reference signal and the antenna patterns are verified through in-situ calibrations with a reference antenna. Commissioning of the system is in full progress as well as the analysis of first measured air showers. We present first air showers measured with the largest radio detector for cosmic rays in the world.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, surface detectors, Water-Cherenkov detectors, Surface Scintillator detectors
Published in RUNG: 16.05.2025; Views: 490; Downloads: 9
.pdf Full text (7,10 MB)
This document has many files! More...

2.
Machine learning-based analyses using surface detector data of the Pierre Auger Observatory
Steffen Hahn, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution

Abstract: The Pierre Auger Observatory is the largest detector for the study of extensive air showers induced by ultra-high-energy cosmic rays (UHECRs). Its hybrid detector design allows the simultaneous observation of different parts of the shower evolution using various detection techniques. To accurately understand the physics behind the origin of UHECRs, it is essential to determine their mass composition. However, since UHECRs cannot be measured directly, estimating their masses is highly non-trivial. The most common approach is to analyze mass-sensitive observables, such as the number of secondary muons and the atmospheric depth of the shower maximum. An intriguing part of the shower to estimate these observables is its footprint. The shower footprint is detected by ground-based detectors, such as the Water-Cherenkov detectors (WCDs) of the Surface Detector (SD) of the Observatory, which have an uptime of nearly 100%, resulting in a high number of observed events. However, the spatio-temporal information stored in the shower footprints is highly complex, making it very challenging to analyze the footprints using analytical and phenomenological methods. Therefore, the Pierre Auger Collaboration utilizes machine learning-based algorithms to complement classical methods in order to exploit the measured data with unprecedented precision. In this contribution, we highlight these machine learning-based analyses used to determine high-level shower observables that help to infer the mass of the primary particle, with a particular focus on analyses using the shower footprint detected by the WCDs and the Surface Scintillator Detectors (SSD) of the SD. We show that these novel methods show promising results on simulations and offer improved reconstruction performance when applied to measured data.
Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, surface detector, Water-Cherenkov detectors (WCDs), Surface Scintillator Detectors (SSDs), UHECR mass composition, air-shower footprint, machine learning
Published in RUNG: 16.05.2025; Views: 428; Downloads: 6
.pdf Full text (1,48 MB)
This document has many files! More...

3.
The dynamic range of the upgraded surfac-detector stations of AugerPrime
Gioacchino Alex Anastasi, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented.
Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detectors, scintillator surface detectors
Published in RUNG: 23.01.2024; Views: 2309; Downloads: 7
.pdf Full text (616,96 KB)
This document has many files! More...

4.
The upgrade of the Pierre Auger Observatory with the Scintillator Surface Detector.
G. Cataldi, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: Since its full commissioning in 2008, the Pierre Auger Observatory has consistently demonstrated its scientific productivity. A major upgrade of the Surface Detector array (SD) improves the capabilities of measuring the different components of extensive air showers. One of the elements of the upgrade consists of new Scintillator Surface Detectors (SSD) placed on top of the Water-Cherenkov stations of the SD. At the Observatory, the integration of the SSD components and their deployment in the array is well advanced. In this paper, the main challenges and characteristics of the construction and installation will be reviewed. Started in 2016, an Engineering Array of twelve upgraded stations has been taking data in the field. In March 2019, a preproduction array of 77 SSDs started data acquisition with an adapted version of non-upgraded electronics. It is collecting events and proving the goodness of SSD design. Since December 2020, the upgraded electronics boards are being deployed in the field together with the photomultiplier tubes, increasing the number of SSD detectors, which are taking data continuosly with good stability. In this paper, the-long term performance of a subset of stations acquiring data for more than two years will be discussed. The data collected so far demonstrate the quality of the new detectors and the physics potential of the upgrade project
Keywords: Pierre Auger Observatory, indirect detection, surface detection, ground array, scintillator surface detectors, ultra-high energy, cosmic rays
Published in RUNG: 04.10.2023; Views: 2453; Downloads: 8
.pdf Full text (3,56 MB)
This document has many files! More...

5.
6.
7.
8.
Upgrade of the Pierre Auger Observatory (AugerPrime)
Ralph Engel, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: The data collected with the Pierre Auger Observatory have led to a number of surprising discoveries. While a strong suppression of the particle flux at the highest energies has been established unambiguously, the dominant physics processes related to this suppression could not be identified. Within the energy range covered by fluorescence detector observations with sufficient statistics, an unexpected change of the depth of maximum distribution is found. Using LHC-tuned interaction models these observations can be understood as a correlated change of the fluxes of different mass groups. On the other hand, they could also indicate a change of hadronic interactions above the energy of the ankle. Complementing the water Cherenkov detectors of the surface array with scintillator detectors will, mainly through the determination of the muonic shower component, extend the composition sensitivity of the Auger Observatory into the flux suppression region. The upgrade of the Auger Observatory will allow us to estimate the primary mass of the highest energy cosmic rays on a shower-by-shower basis. In addition to measuring the mass composition the upgrade will open the possibility to search for light primaries at the highest energies, to perform composition-selected anisotropy studies, and to search for new phenomena including unexpected changes of hadronic interactions. After introducing the physics motivation for upgrading the Auger Observatory the planned detector upgrade is presented. In the second part of the contribution the expected performance and improved physics sensitivity of the upgraded Auger Observatory are discussed.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, elemental composition sensitivity, Auger upgrade (AugerPrime), muonic shower component, scintillator detectors
Published in RUNG: 03.03.2016; Views: 5839; Downloads: 226
.pdf Full text (659,02 KB)

Search done in 0.03 sec.
Back to top