Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 6 / 6
First pagePrevious page1Next pageLast page
Summertime particulate matter and its composition in Greece
M. A. Tsiflikiotou, E. Kostenidou, D. K. Papanastasiou, D. Patoulias, Pavlos Zarmpas, D. Paraskevopoulou, E. Diapouli, Christos Kaltsonoudis, Kalliopi Florou, Iasonas Stavroulas, 2019, original scientific article

Abstract: During the summer of 2012 a coordinated field campaign was conducted in multiple locations in Greece in order to characterize the ambient particulate matter (PM) levels, its chemical composition and the contribution of the regional and local sources. PM1, PM2.5 and PM10 samples were collected simultaneously at seven different sites in Greece: an urban and a suburban station in Patras, a suburban station in Thessaloniki, a suburban and an urban background station in Athens, a rural background station at the Navarino Environmental Observatory (NEO) in southwestern Peloponnese and a remote background site at Finokalia in the northeastern part of Crete. The sites were selected to facilitate the estimation of the contribution of the local emission sources and long range transport. Sulfate and organics were the major PM1 components in all sites suggesting that high sulfate levels still remain in parts of Europe. The photochemistry of the Eastern Mediterranean can convert rapidly the emitted sulphur dioxide to sulfate. Our analysis indicated significant sulfate production over the area, with high sulfate levels, especially in the remote site of Finokalia, associated with air masses that had passed over Turkey. There was high regional secondary organic aerosol production dominating organic aerosol levels even in a major city like Athens. High organic aerosol levels were associated with air masses that had crossed the Balkans with a significant biogenic component. The average PM2.5 concentration ranged from 13 to 18 μg m−3 in the different sites. There were unexpected significant gradients in the concentrations of secondary aerosol components in length scales of a few hundred kilometers. The low concentrations of measured PM2.5 nitrate are mostly organic nitrates and supermicrometer nitrate associated with sea-salt and dust. Dust was a significant PM10 constituent in all areas and was quite variable in space showing the importance of the local sources.
Keywords: PM2.5, sulfate aerosol, secondary inorganic aerosol, secondary organic aerosol, Greece
Published in RUNG: 13.05.2024; Views: 207; Downloads: 0
This document has many files! More...

Comparing black-carbon- and aerosol-absorption-measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, Konstantina Vasilatou, 2022, original scientific article

Abstract: We report on an inter-comparison of black-carbon- and aerosol-absorption-measuring instruments with laboratory-generated soot particles coated with controlled amounts of secondary organic matter (SOM). The aerosol generation setup consisted of a miniCAST 5201 Type BC burner for the generation of soot particles and a new automated oxidation flow reactor based on the micro smog chamber (MSC) for the generation of SOM from the ozonolysis of α-pinene. A series of test aerosols was generated with elemental to total carbon (EC  TC) mass fraction ranging from about 90 % down to 10 % and single-scattering albedo (SSA at 637 nm) from almost 0 to about 0.7. A dual-spot Aethalometer AE33, a photoacoustic extinctiometer (PAX, 870 nm), a multi-angle absorption photometer (MAAP), a prototype photoacoustic instrument, and two prototype photo-thermal interferometers (PTAAM-2λ and MSPTI) were exposed to the test aerosols in parallel. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. We believe that the setup and methodology described in this study can easily be standardised and provide a straightforward and reproducible procedure for the inter-comparison and characterisation of both filter-based and in situ black-carbon-measuring (BC-measuring) instruments based on realistic test aerosols.
Keywords: black carbon, aerosol absorption, secondary organic aerosol, coating
Published in RUNG: 01.02.2022; Views: 1822; Downloads: 49
.pdf Full text (752,94 KB)

Secondary organic aerosol formation from anthropogenic air pollution : rapid and higher than expected
Rainer Volkamer, Jose L. Jimenez, F. M. San Martini, Katja Džepina, Q. Zhang, Dara Salcedo, Luisa T. Molina, D. Worsnop, 2006, original scientific article

Abstract: The atmospheric chemistry of volatile organic compounds (VOCs) in urban areas results in the formation of 'photochemical smog', including secondary organic aerosol (SOA). State-of-the-art SOA models parameterize the results of simulation chamber experiments that bracket the conditions found in the polluted urban atmosphere. Here we show that in the real urban atmosphere reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise. Contrary to current belief, a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products. Global models deem AVOCs a very minor contributor to SOA compared to biogenic VOCs (BVOCs). If our results are extrapolated to other urban areas, AVOCs could be responsible for additional 3 - 25 Tg yr(-1) SOA production globally, and cause up to - 0.1 W m(-2) additional top-of-the-atmosphere radiative cooling.
Keywords: atmospheric aerosol, atmospheric chemistry, volatile organic compounds, secondary organic aerosols
Published in RUNG: 12.04.2021; Views: 3267; Downloads: 0
This document has many files! More...

Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes
Q. Zhang, Jose L. Jimenez, M. R. Canagaratna, J. David Allan, H. Coe, I. M. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Katja Džepina, 2007, original scientific article

Abstract: Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.
Keywords: atmospheric aerosol, secondary organic aerosols, primary organic aerosols, aerodyne aerosol mass spectrometer
Published in RUNG: 11.04.2021; Views: 2171; Downloads: 0
This document has many files! More...

Evolution of organic aerosols in the atmosphere
Jose L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. David Allan, H. Coe, Katja Džepina, 2009, original scientific article

Abstract: Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
Keywords: secondary organic aerosol, source apportionment, aerodyne aerosol mass spectrometer, global field measurements, laboratory experiments
Published in RUNG: 11.04.2021; Views: 2320; Downloads: 0
This document has many files! More...

Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal : relevance of O/C as a tracer for aqueous multiphase chemistry
Eleanor M. Waxman, Katja Džepina, Barbara Ervens, Julia Lee-Taylor, Bernard Aumont, Jose L. Jimenez, Sasha Madronich, Rainer Volkamer, 2013, original scientific article

Abstract: The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry.
Keywords: secondary organic aerosol, glyoxal, aqueous multiphase chemistry, oxygen-to-carbon ratio, single scattering albedo
Published in RUNG: 11.04.2021; Views: 2213; Downloads: 0
This document has many files! More...

Search done in 0.04 sec.
Back to top