Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 6 / 6
First pagePrevious page1Next pageLast page
Field evaluation of low-cost PM sensors (Purple Air PA-II) under variable urban air quality conditions, in Greece
Iasonas Stavroulas, Georgios Grivas, Panagiotis Michalopoulos, Eleni Liakakou, Aikaterini Bougiatioti, Panayiotis Kalkavouras, Kyriaki Maria Fameli, Nikolaos Hatzianastassiou, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, 2020, original scientific article

Abstract: Recent advances in particle sensor technologies have led to an increased development and utilization of low-cost, compact, particulate matter (PM) monitors. These devices can be deployed in dense monitoring networks, enabling an improved characterization of the spatiotemporal variability in ambient levels and exposure. However, the reliability of their measurements is an important prerequisite, necessitating rigorous performance evaluation and calibration in comparison to reference-grade instrumentation. In this study, field evaluation of Purple Air PA-II devices (low-cost PM sensors) is performed in two urban environments and across three seasons in Greece, in comparison to different types of reference instruments. Measurements were conducted in Athens (the largest city in Greece with nearly four-million inhabitants) for five months spanning over the summer of 2019 and winter/spring of 2020 and in Ioannina, a medium-sized city in northwestern Greece (100,000 inhabitants) during winter/spring 2019–2020. The PM2.5 sensor output correlates strongly with reference measurements (R2 = 0.87 against a beta attenuation monitor and R2 = 0.98 against an optical reference-grade monitor). Deviations in the sensor-reference agreement are identified as mainly related to elevated coarse particle concentrations and high ambient relative humidity. Simple and multiple regression models are tested to compensate for these biases, drastically improving the sensor’s response. Large decreases in sensor error are observed after implementation of models, leading to mean absolute percentage errors of 0.18 and 0.12 for the Athens and Ioannina datasets, respectively. Overall, a quality-controlled and robustly evaluated low-cost network can be an integral component for air quality monitoring in a smart city. Case studies are presented along this line, where a network of PA-II devices is used to monitor the air quality deterioration during a peri-urban forest fire event affecting the area of Athens and during extreme wintertime smog events in Ioannina, related to wood burning for residential heating.
Keywords: particulate matter, PM2.5, air quality, low-cost sensors, optical particle counter
Published in RUNG: 10.05.2024; Views: 141; Downloads: 3
URL Link to file
This document has many files! More...

Intra- and inter-city variability of ▫$PM_2.5$▫ concentrations in Greece as determined with a low-cost sensor network
Konstantinos Dimitriou, Iasonas Stavroulas, Georgios Grivas, Charalampos Chatzidiakos, Georgios Kosmopoulos, Andreas Kazantzidis, Konstantinos Kourtidis, Athanasios Karagioras, Nikolaos Hatzianastassiou, Spyros N. Pandis, 2023, original scientific article

Abstract: Measurements of PM2.5 concentrations in five major Greek cities over a two-year period using calibrated low-cost sensor-based particulate matter (PM) monitors (Purple Air PA-II) were combined with local meteorological parameters, synoptic patterns and air mass residence time models to investigate the factors controlling PM2.5 spatiotemporal variability over continental Greece. Fourteen sensors nodes in Athens, Patras, Ioannina, Xanthi, and Thermi (in the Metropolitan Area of Thessaloniki) were selected out of more than 100 of a countrywide network for detailed analysis. The cities have populations ranging from 65k to 3M inhabitants and cover different latitudes along the South-North axis. High correlations between the daily average PM2.5 levels were observed among all sites, indicating strong intra- and inter-city covariance of concentrations, both in cold and warm periods. Higher PM2.5 concentrations in all cities during the cold period were primarily associated with low temperatures and stagnant anticyclonic conditions, favoring the entrapment of residential heating emissions from biomass burning. Anticyclonic conditions were also connected to an increased frequency of PM2.5 episodes, exceeding the updated daily guideline value (15 μg m−3) of the World Health Organization (WHO). During the warm period, nearly uniform PM2.5 levels were encountered across continental Greece, independently of their population size. This uniformity strongly suggests the importance of long-range transport and regional secondary aerosol formation for PM2.5 during this period. Peak concentrations were associated mainly with regional northern air flows over Greece and the Balkan Peninsula. The use of the measurements from dense air quality sensor networks, provided that a robust calibration protocol and continuous data quality assurance practices are followed, appears to be an efficient tool to gain insights on the levels and variability of PM2.5 concentrations, underpinning the characterization of spatial and seasonal particularities and supporting real-time public information and warning.
Keywords: particulate matter, PM2.5, biomass burning, low-cost sensors, purple air PA-II, concentration weighted trajectory, potential source contribution function
Published in RUNG: 10.05.2024; Views: 136; Downloads: 2
URL Link to file
This document has many files! More...

Cationic polymer thin films for electrochemical detection of bacteria
Tina Škorjanc, 2022, published scientific conference contribution abstract

Keywords: sensors, electrochemical impedance spectroscopy, porous materials, E. coli
Published in RUNG: 06.12.2022; Views: 1425; Downloads: 6
URL Link to full text
This document has many files! More...

Search done in 0.03 sec.
Back to top