1. Single crystal synthesis and surface electronic structure of Bi_{1.993}Cr_{0.007}Se_{3}Sandra Gardonio, Zipporah Rini Benher, Mattia Fanetti, Paolo Moras, Polina M. Sheverdyaeva, Matjaž Valant, 2024, original scientific article Keywords: topological insulators, magnetic atoms, crystal synthesis, formation of clusters, surface electronic structure Published in RUNG: 21.08.2024; Views: 728; Downloads: 8 Full text (2,05 MB) This document has many files! More... |
2. From HX-groups to HX-polygroupsSeyed S. Mousavi, Morteza Jafarpour, Irina Elena Cristea, 2023, original scientific article Keywords: HX-group, hypercompositional structure, coset, polygroup, regularity, uniformity, essentiality, double coset Published in RUNG: 22.12.2023; Views: 1614; Downloads: 8 Full text (340,31 KB) This document has many files! More... |
3. Spine-sheath jet model for low-luminosity AGNsMargot Boughelilba, Anita Reimer, Lukas Merten, Jon Paul Lundquist, 2023, published scientific conference contribution Abstract: In several jetted AGNs, structured jets have been observed. In particular spine-sheath configurations
where the jet is radially divided into two or more zones of different flow velocities.
We present a model based on the particle and radiation transport code CR-ENTREES. Here,
interaction rates and secondary particle and photon yields are pre-calculated by Monte Carlo
event generators or semi-analytical approximations. These are then used to create transition
matrices, that describe how each particle spectrum evolves with time. This code allows for
arbitrary injection of primary particles, and the possibility to choose which interaction to include
(photo-meson production, Bethe-Heitler pair-production, inverse-Compton scattering, �-� pair
production, decay of all unstable particles, synchrotron radiation — from electrons, protons, and
all relevant secondaries before their respective decays — and particle escape).
In addition to the particle and radiation interactions taking place in each homogeneous zone, we
implement the feedback between the two zones having different bulk velocities. The main mechanism
at play when particles cross the boundary between the two zones is shear acceleration. We
follow a microscopic description of this acceleration process to create a corresponding transition
matrix and include it in our numerical setup. Furthermore, each zone’s radiation field can be
used as an external target photon field for the other zone’s particle interactions. We present here
the first results of the effect of a two-zone spine-sheath jet, by applying this model to typical
low-luminosity AGNs. Keywords: active galactic nuclei, low-luminosity jetted AGN, spine-sheath jet structure Published in RUNG: 24.08.2023; Views: 1609; Downloads: 5 Full text (461,21 KB) This document has many files! More... |
4. |
5. |
6. |
7. Giant and tunable out-of-plane spin polarization of topological antimonenePolina M. Sheverdyaeva, Conor Hogan, Gustav Bihlmayer, Jun Fujii, Ivana Vobornik, Matteo Jugovac, Asish K. Kundu, Sandra Gardonio, Zipporah Rini Benher, Giovanni di Santo, 2023, original scientific article Keywords: density functional theory, spin-resolved ARPES, electronic structure, topological insulators, 2D materials, antimonene Published in RUNG: 18.07.2023; Views: 1797; Downloads: 5 Full text (4,26 MB) This document has many files! More... |
8. Efficiency of the grid energy storage technology based on iron-chloride material cycleUroš Luin, doctoral dissertation Abstract: Future high-capacity energy storage technologies are crucial for a highly renewable energy mix, and their mass deployment must rely on cheap and abundant materials, such as iron chloride. The iron chloride electrochemical cycle (ICEC), suitable for long-term grid energy storage using a redox potential change of Fe2+/Fe, involves the electrolysis of a highly concentrated aqueous FeCl2 solution yielding solid iron deposits. For the high overall energy efficiency of the cycle, it is crucial maximizing the energy efficiency of the electrolysis process. The thesis presents a study of the influence of electrolysis parameters on energy efficiency, performed in an industrial-type electrolyzer system. We studied the conductivity of the FeCl2 solution as a function of concentration and temperature and correlated it with the electrolysis energy efficiency as a function of current density. The contribution of the resistance polarization increases with the current density, causing a decrease in overall energy efficiency. The highest energy efficiency of 89 ±3 % was achieved using
2.5 mol dm-3 FeCl2 solution at 70 °C and a current density of 0.1 kA m-2.
In terms of the energy input per Fe mass, this means 1.88 Wh g-1. The limiting energy input per mass of the Fe-deposit, calculated by extrapolating experimental results toward Eocell potential, was found to be 1.76 Wh g-1. For optimal long-duration electrolysis efficiency and performance, the optimal catholyte concentration range is
1-2 mol dm-3 FeCl2. We performed in situ X-ray absorption spectroscopy experimental studies to validate theoretical conclusions from literature related to the population and structure of Fe-species in the FeCl2 (aq) solution at different concentrations (1 - 4 mol dm-3) and temperatures (25 - 80 °C). This revealed that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five H2O at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical H2O is substituted by a Cl ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing state-of-the-art conductivity models. An additional steric impediment of the electrolytic cell is caused by the predominant neutral species present in the catholyte solution at high concentration. This correlates with poor electrolysis performance at a very high catholyte concentration (4 mol dm-3 FeCl2), especially at high current densities (> 1 kA m-2). The neutral Fe[Cl2(H2O)4]0 complex negatively affects the anion exchange membrane ion (Cl-) transfer and lowers the concentration of electroactive species (Fe[Cl(H2O)5]+) at the cathode surface. The kinetics of hydrogen evolution from the reaction between Fe powder and HCl acid was studied under the first-order reaction condition. The activation energy was determined to be 55.3 kJ mol-1. Keywords: ICEC, Power-to-Solid, energy storage, hydrogen, ferrous chloride, electrolysis, Fe deposition, efficiency, XAS, structure and population, ionic species, ion association, conductivity Published in RUNG: 18.04.2023; Views: 2467; Downloads: 39 (1 vote) Full text (4,34 MB) |
9. Dependence relations and grade fuzzy setAlessandro Linzi, Irina Elena Cristea, 2023, original scientific article Abstract: With the aim of developing the recent theory of dependence relations, we elaborate a procedure to measure the strength of the influence of an element on another with respect to a given dependence relation on a finite set. We call this measure the degree of influence. Its definition is based on a partial hyperoperation and a directed graph which we associate with any dependence relation. We compute the degree of influence in various examples and prove some general properties. Among these properties, we find symmetries that have the potential to be applied in the realization of effective algorithms for the computations. Keywords: dependence relation, degree of influence, grade fuzzy set, hypercompositional structure, hyperoperation Published in RUNG: 23.01.2023; Views: 2444; Downloads: 7 Full text (304,05 KB) This document has many files! More... |
10. Correlation between FeCl2 electrolyte conductivity and electrolysis efficiencyUroš Luin, Matjaž Valant, Iztok Arčon, 2022, published scientific conference contribution abstract Abstract: The electrolysis efficiency is an important aspect of the Power-to-Solid energy storage technology (EST) based
on the iron chloride electrochemical cycle [1]. This cycle employs an aqueous FeCl2 catholyte solution for the
electro-reduction of iron. The metal iron deposits on the cathode. The energy is stored as a difference in the
redox potential of iron species. Hydrogen, as an energy carrier, is released on demand over a fully controlled
hydrogen evolution reaction between metallic Fe0 and HCl (aq) [1]. Due to these characteristics, the cycle is
suitable for long-term high-capacity and high-power energy storage. In a previous work [2] we revealed that
the electrolyte conductivity linearly increases with temperature. Contrary, the correlation between the
electrolyte concentration and efficiency is not so straightforward. Unexpectedly small efficiency variations were
found between 1 and 2.5 mol dm-3 FeCl2 (aq) followed by an abrupt efficiency drop at higher concentrations.
To explain the behavior of the observed trends and elucidate the role of FeCl2 (aq) complex ionic species we
performed in situ X-ray absorption studies. We made a dedicated experimental setup, consisting of a tubular
oven and PMMA liquid absorption cell, and performed the measurements at the DESY synchrotron P65
beamline. The XAS investigation covered XANES and EXAFS analyses of FeCl2 (aq) at different
concentrations (1 - 4 molL-1) and temperatures (25 - 80 °C). We found that at low temperature and low FeCl2
concentration the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33
(±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å [3]. The structure of the ionic complex
gradually changes with an increase in temperature and/or concentration. The apical water molecule is
substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the single charged
Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well
correlates with the existing conductivity models [3].
[1] M. Valant, “Procedure for electric energy storage in solid matter. United States Patent and
Trademark Office. Patent No. US20200308715,” Patent No. US20200308715, 2021.
[2] U. Luin and M. Valant, “Electrolysis energy efficiency of highly concentrated FeCl2 solutions
for power-to-solid energy storage technology,” J. Solid State Electrochem., vol. 26, no. 4, pp.
929–938, Apr. 2022, doi: 10.1007/S10008-022-05132-Y.
[3] U. Luin, I. Arčon, and M. Valant, “Structure and Population of Complex Ionic Species in
FeCl2 Aqueous Solution by X-ray Absorption Spectroscopy,” Molecules, vol. 27, no. 3, 2022,
doi: 10.3390/molecules27030642. Keywords: Iron chloride electrochemical cycle, Power-to-Solid energy storage, XANES, EXAFS, electrical
conductivity, electrolyte complex ionic species structure and population Published in RUNG: 26.09.2022; Views: 2701; Downloads: 0 (1 vote) This document has many files! More... |