1. Advantages and disadvantages of experiments with ultrashort two-color pulsesMatija Stupar, 2020, doctoral dissertation Abstract: Advances in the development of lasers have led to a new class of radiation sources generating coherent, tunable, ultrashort light pulses in the spectral region ranging from infrared to soft X-rays. This includes high-order harmonics generation in gas (HHG), on which relies the CITIUS facility at University of Nova Gorica (Slovenia), and free-electron lasers (FELs), such as the facility FERMI at Elettra-Sincrotrone Trieste (Italy). The distinctive structure of HHG and FEL radiation paved the way to time-resolved experiments, which are performed to investigate events occurring on a short, or very short, temporal scale, from picoseconds to femtoseconds.
This work focuses on the advantages and disadvantages of some experimental techniques based on using these novel light sources to investigate the microscopic and/or ultrafast dynamics of matter samples, which have been previously driven out of equilibrium.
Advantages rely on the implementation of various applications based on two-color schemes and, more specifically, include the possibility of acquiring two-dimensional frequency maps, measuring electrons’ effective masses, or investigating electronic properties decoupled from the influence of the lattice. Particular focus will be put on experimental methods relying on photoelectric effect and photoelectron spectroscopy. In all experiments, we took advantage of one or more specific properties of HHG and FEL sources, such as controllable chirp, to study laser dressed states in helium, variable polarization, to study electronic properties of iron-based pnictides and ultrashort pulses (< 10 fs) to study the purely electronic dynamics in transition metal dichalcogenides.
On the other hand, the study of the interface between a molecule and a topological insulator revealed some intrinsic limitations and physical drawbacks of the technique, such as spurious effects originating from the high power pulses, like multiphoton absorption and the space charge effect, or the reduction of experimental resolution when pushing for shorter and shorter pulse durations. Some disadvantages are also connected to the current state-of-the-art in the field of ultrashort laser systems, where a trade-off needs to be found between repetition rate and laser power.
Finally, state-of-the-art experiments based on the ability to generate ultrashort pulses carrying orbital angular momentum in visible, near-infrared as well as extreme UV range will be presented. The use of these pulses opens the door to the investigation of new physical phenomena, such as probing magnetic vortices using extreme ultraviolet light from a free-electron laser or imprinting the spatial distribution of an ultrashort infrared pulse carrying orbital angular momentum onto a photoelectron wave packet. Found in: ključnih besedah Summary of found: ...high-order harmonic generation, free-electron lasers, hot-electrons dynamics, surface science, pump-probe photoemission, ultraviolet photoemission, orbital angular... Keywords: ultrafast lasers, two-color experiments, photoemission, high-order harmonic generation, free-electron lasers, hot-electrons dynamics, surface science, pump-probe photoemission, ultraviolet photoemission, orbital angular momentum Published: 02.12.2020; Views: 2741; Downloads: 100
Fulltext (19,78 MB) |
2. Real-time motor unit identification from high-density surface EMGVojko Glaser, Aleš Holobar, Damjan Zazula, 2013, original scientific article Abstract: This study addresses online decomposition of high-density surface electromyograms (EMG) in real-time. The proposed method is based on previouslypublished Convolution Kernel Compensation (CKC) technique and sharesthe same decomposition paradigm, i.e. compensation of motor unit action potentials and direct identification of motor unit (MU) discharges. In contrast to previously published version of CKC, which operates in batch mode and requires ~ 10 s of EMG signal, the real-time implementation begins with batch processing of ~ 3 s of the EMG signal in the initialization stage and continues on with iterative updating of the estimators of MU discharges as blocks of new EMG samples become available. Its detailed comparison to previously validated batch version of CKC and asymptotically Bayesian optimal Linear Minimum Mean Square Error (LMMSE) estimator demonstrates high agreementin identified MU discharges among all three techniques. In the case of synthetic surface EMG with 20 dB signal-to-noise ratio, MU discharges were identified with average sensitivity of 98 %. In the case of experimental EMG, real-time CKC fully converged after initial 5 s of EMG recordings and real-time and batch CKC agreed on 90 % of MU discharges, on average. The real-time CKC identified slightly fewer MUs than its batch version (experimental EMG, 4 MUs versus 5 MUs identified by batch CKC, on average), but required only 0.6 s of processing time on regular personal computer for each second of multichannel surface EMG. Found in: ključnih besedah Keywords: discharge pattern, high-density EMG, surface EMG, motor unit, real time decomposition Published: 05.01.2016; Views: 4458; Downloads: 0 |
3. Azimuthal asymmetry in the risetime of the Surface Detector signals of the Pierre Auger ObservatoryMarko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Ignacio Minaya, 2015, published scientific conference contribution Abstract: The azimuthal asymmetry in the risetime of signals in Auger
surface detector stations is a source of information on shower
development. The azimuthal asymmetry is due to a combination of
the longitudinal evolution of the shower and geometrical
effects related to the angles of incidence of the particles
into the detectors. The magnitude of the effect depends upon
the zenith angle and state of development of the shower and
thus provides a novel observable sensitive to the mass
composition of cosmic rays above 3 × 10[sup]18 eV. By comparing
measurements with predictions from shower simulations, we find
for both of our adopted models of hadronic physics (QGSJetII-
04 and Epos-LHC) an indication that the mean cosmic-ray mass
increases with energy, as has been inferred from other studies.
However the absolute values derived for the mass are dependent
on the shower model and on the range of distance from the
shower core selected. Thus the method has uncovered further
deficiencies in our understanding of shower modelling that must
be resolved before the mass composition can be inferred from
(sec θ)max. Found in: ključnih besedah Keywords: Pierre Auger Observatory, Surface Detector, risetime of detector signal, azimuthal asymmetry, extensive air showers Published: 03.03.2016; Views: 4015; Downloads: 192
Fulltext (243,04 KB) |
4. Solar Cycle Modulation of Cosmic Rays Observed with the Low Energy Modes of the Pierre Auger ObservatoryMarko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, Jimmy Masías-Meza, 2015, published scientific conference contribution Abstract: The low energy modes of the surface detector array of the
Pierre Auger Observatory record variations in the flux of low
energy secondary particles with extreme detail. These two modes
consist of recording (1) the rate of signals for energies
between ∼15 MeV and ∼100 MeV (the Scaler mode) and (2) the
calibration charge histograms of the individual pulses detected
by each water-Cherenkov station, covering different energy
channels up to ∼1 GeV (the Histogram mode). Previous work has
studied the flux of galactic cosmic rays on short and
intermediate time scales (i.e. from minutes to weeks) using
these low energy modes. In this work, after including a long-
term correction to the response of the detectors, we present
the first long-term analysis of the flux of cosmic rays using
scalers and two energy bands of the calibration histograms.
We show its sensitivity to the solar cycle variation and its
relation to the solar modulation of cosmic rays for an 8-year
period. Found in: ključnih besedah Summary of found: ...The low energy modes of the surface detector array of the
Pierre Auger Observatory record... Keywords: Pierre Auger Observatory, Surface Detector, secondary cosmic rays, scaler mode, charge histogram mode, solar cycle modulation Published: 03.03.2016; Views: 4064; Downloads: 198
Fulltext (533,18 KB) |
5. Initial results of a direct comparison between the Surface Detectors of the Pierre Auger Observatory and the Telescope ArrayMarko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, R. Takeishi, 2015, published scientific conference contribution Abstract: The Pierre Auger Observatory (Auger) in Mendoza, Argentina and
the Telescope Array (TA) in Utah, USA aim at unraveling the
origin and nature of Ultra-High Energy Cosmic Rays (UHECR).
At present, there appear to be subtle differences between Auger
and TA results and interpretations. Joint working groups have
been established and have already reported preliminary
findings. From an experimental standpoint, the Surface
Detectors (SD) of both experiments make use of different
detection processes not equally sensitive to the components of
the extensive air showers making it to the ground. In particular, the muonic component of the shower measured at
ground level can be traced back to the primary composition,
which is critical for understanding the origin of UHECRs.
In order to make direct comparisons between the SD detection
techniques used by Auger and TA, a joint SD experimental
research program is being developed. In the first phase,
two Auger SD stations were deployed at the TA Central Laser
Facility to compare station-level responses. This paper
concentrates on the results obtained with the first Auger SD
station (an “Auger North” design), which has been operating
since October 2014. The second Auger SD station, identical to
the ones being operated at Auger in Argentina (an “Auger South”
design), was just deployed in June 2015. The second phase of
this research program will be to co-locate six Auger North SD
stations with TA stations in the field to compare event-level
responses. Found in: ključnih besedah Keywords: Ultra-High Energy Cosmic Rays, Pierre Auger Observatory, Telescope Array, extensive air showers, secondary cosmic rays, muonic shower component, surface detectors Published: 08.03.2016; Views: 3898; Downloads: 183
Fulltext (1,42 MB) |
6. Improved limits to point-like sources of ultrahigh energy neutrinos with the Pierre Auger ObservatoryLili Yang, Marta Trini, Pablo Pieroni, Jaime Alvarez-Muniz, 2016, treatise, preliminary study, study Found in: ključnih besedah Summary of found: ...ultrahigh energy neutrinos,
Pierre Auger Observatory,
surface detector... Keywords: ultrahigh energy neutrinos, Pierre Auger Observatory, surface detector Published: 07.04.2016; Views: 4446; Downloads: 0
Fulltext (307,54 KB) |
7. Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger ObservatoryMarko Zavrtanik, Danilo Zavrtanik, Lili Yang, Serguei Vorobiov, Darko Veberič, Marta Trini, Samo Stanič, Ahmed Saleh, Gašper Kukec Mezek, Andrej Filipčič, A. Aab, 2016, original scientific article Abstract: The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ)max, sensitive to the mass composition of cosmic rays above 3×1018 eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modeling that must be resolved before the mass composition can be inferred from (secθ)max. Found in: ključnih besedah Keywords: ultra-high energy cosmic rays (UHECR), UHECR mass composition, Pierre Auger Observatory, extensive air showers, Auger Surface Detector signals risetime, azimuthal symmetry Published: 15.04.2016; Views: 4660; Downloads: 0
Fulltext (698,19 KB) |
8. Deposition and possible influence of a self-cleaning thin TiO[sub]2 [over] (SiO [sub] 2) film on a photovoltaic module efficiencyAnja Soklič, Marko Kete, Urška Lavrenčič Štangar, Minoo Tasbihi, 2014, published scientific conference contribution Found in: ključnih besedah Summary of found: ...solar cells, fotokataliza, self-cleaning surface, ... Keywords: solar cells, fotokataliza, self-cleaning surface Published: 16.06.2016; Views: 4481; Downloads: 22
Fulltext (0,00 KB) |
9. Molecule-Driven Substrate Reconstruction in the Two-Dimensional Self-Organization of Fe-Phthalocyanines on Au(110)Sara Fortuna, Pierluigi Gargiani, Maria Grazia Betti, Carlo Mariani, Arrigo Calzolari, Silvio Modesti, Stefano Fabris, 2012, original scientific article Abstract: The structural patterns formed by molecular self-assembly at surfaces are usually controlled by the relative strengths of the intermolecular and molecule–substrate interactions. An additional steering effect is present when the substrate can easily reconstruct upon molecular adsorption, which therefore drives a self-templating effect on the metal support. This is here demonstrated for the model case of Fe-phthalocyanine molecules adsorbed on the Au(110) surface. Scanning tunneling microscopy shows that molecular adsorption promotes a local (1 × 5) surface reconstruction, which drives the assembly of molecular chains along the [11̅0] direction. The order and periodicity of the molecular assemblies are determined with low energy electron diffraction patterns. Density functional theory calculations reveal the energetic origins of the molecule-driven substrate reconstruction. Since the function of molecular overlayers at surfaces is strongly correlated to their structure, these results have implications in the design of new metal/molecular interfaces. Found in: ključnih besedah Summary of found: ...structural patterns formed by molecular self-assembly at surfaces are usually controlled by the relative strengths... Keywords: self-assembly, phthalocyanine, Au(110), DFT, density functional theory, simulation, surface, recontruction Published: 11.10.2016; Views: 3978; Downloads: 0
Fulltext (2,97 MB) |
10. Formation of Hybrid Electronic States in FePc Chains Mediated by the Au(110) SurfaceMaria Grazia Betti, Pierluigi Gargiani, Carlo Mariani, Stefano Turchini, Nicola Zema, Sara Fortuna, Arrigo Calzolari, Stefano Fabris, 2012, original scientific article Abstract: Iron–phthalocyanine (FePc) molecules deposited on the Au(110) surface self-organize in ordered chains driven by the reconstructed Au channels. The interaction process induces a rehybridization of the electronic states localized on the central metal atom, breaking the 4-fold symmetry of the molecular orbitals of the FePc molecules. The molecular adsorption is controlled by a symmetry-determined mixing between the electronic states of the Fe metal center and of the Au substrate, as deduced by photoemission and absorption spectroscopy exploiting light polarization. DFT calculations rationalize this mixing of the Fe and Au states on the basis of symmetry arguments. The calculated electronic structure reproduces the main experimental spectral features, which are associated to a distorted molecular structure displaying a trigonal bipyramidal geometry of the ligands around the metal center. Found in: ključnih besedah Keywords: phthalocyanine, Au(110), gold, surface, DFT, density functional theory, calculation, simulation Published: 13.10.2016; Views: 4123; Downloads: 0
Fulltext (3,25 MB) |