1. Multi-layer palladium diselenide as a contact material for two-dimensional tungsten diselenide field-effect transistorsGennadiy Murastov, Muhammad Awais Aslam, Simon Leitner, Vadym Tkachuk, Iva Plutnarová, Egon Pavlica, Raul D. Rodriguez, Zdeněk Sofer, Aleksandar Matković, 2024, original scientific article Abstract: Tungsten diselenide (WSe2) has emerged as a promising ambipolar semiconductor material for field-effect transistors (FETs) due to its unique electronic properties, including a sizeable band gap, high carrier mobility, and remarkable on–off ratio. However, engineering the contacts to WSe2 remains an issue, and high contact barriers prevent the utilization of the full performance in electronic applications. Furthermore, it could be possible to tune the contacts to WSe2 for effective electron or hole injection and consequently pin the threshold voltage to either conduction or valence band. This would be the way to achieve complementary metal–oxide–semiconductor devices without doping of the channel material.This study investigates the behaviour of two-dimensional WSe2 field-effect transistors with multi-layer palladium diselenide (PdSe2) as a contact material. We demonstrate that PdSe2 contacts favour hole injection while preserving the ambipolar nature of the channel material. This consequently yields high-performance p-type WSe2 devices with PdSe2 van der Waals contacts. Further, we explore the tunability of the contact interface by selective laser alteration of the WSe2 under the contacts, enabling pinning of the threshold voltage to the valence band of WSe2, yielding pure p-type operation of the devices. Keywords: field-effect transistor, tungsten diselenide, van der Waals, two-dimensional materials Published in RUNG: 29.05.2024; Views: 1250; Downloads: 6 Full text (3,06 MB) This document has many files! More... |
2. |
3. Solution-processed graphene-nanographene van der Waals heterostructures for photodetectors with efficient and ultralong charge separationZhaoyang Liu, Haixin Qiu, Shuai Fu, Can Wang, Xuelin Yao, Alex Dixon, Stéphane Campidelli, Egon Pavlica, Gvido Bratina, Sheng Zhao, Loïc Rondin, 2021, original scientific article Keywords: absorption, colloids, molecules, sensors, two dimensional materials Published in RUNG: 28.02.2023; Views: 1870; Downloads: 0 |
4. Voltage-dependent FTIR and 2D infrared spectroscopies within the electric double layer using a plasmonic and conductive electrodeNan Yang, Matthew J. Ryan, Minjung Son, Andraž Mavrič, Martin Zanni, 2023, original scientific article Abstract: Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10–20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3–5 nm Al2O3, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages. Keywords: two-dimensional infrared spectroscopy, infrared transparent substrate, voltage-dependent infrared experiments Published in RUNG: 24.02.2023; Views: 1967; Downloads: 6 Full text (6,07 MB) |
5. Photoexcited charge mobility in quasi two-dimensional polyacetyleneNadiia Pastukhova, Kejun Liu, Renhao Dong, Gvido Bratina, Xinliang Feng, Egon Pavlica, 1894, published scientific conference contribution abstract Abstract: Two-dimensional conjugated polymers (2DCPs) have been described and recognised as crystalline, one- to two-layer polymer nanosheets prepared by 2D covalent polymerization exhibiting strong in-plane π-electron delocalization with two orthogonal directions and weak out-of-plane π-π stacking.[1,2] The extension of polymer dimensionality into two dimensions improves the alignment of individual polymer sheets and overcomes the limitations associated with charge carrier hopping between polymer chains in one-dimensional and crosslinked polymers.[3] Compared to other two-dimensional materials such as graphene or transition metal dichalcogenides, 2DCPs offer a high degree of flexibility in chemical design and are compatible with liquid-based processing methods. Various 2DCPs have been synthesised by surfactant monolayer-assisted interfacial synthesis (SMAIS).[5]
Of particular interest is the photoresponse of these materials due to their tunable properties, such as bandgap and associated wavelength-dependent photoexcitation, which enables a wide range of applications in optoelectronic devices. Using time-of-flight photoconductivity (TOF-PC) measurements [4], we investigate the charge transport properties of 2D polyacetylene prepared by SMAIS method. We preform TOF-PC measurement of 2D polyacetylene using a focused nanosecond pulse laser at 325 nm and electrode separation of 250 µm. From the bias polarity and time duration of the photocurrent, we can determine the polarity, velocity and mobility of photoexcited charge carriers as a function of applied bias voltage and excitation wavelength. Using excitation at 325 m, we observed an electron mobility in the range of 150 cm2 V-1 s-1, which is in the realm of most advances small-molecule single-crystal organic semiconductors and almost an order of magnitude higher than linear polymeric semiconductors. Keywords: Two-dimensional conjugated polymers, 2DCPs, 2Dpolymers, charge mobility, time-of-flight photoconductivity Published in RUNG: 29.11.2022; Views: 2002; Downloads: 0 This document has many files! More... |
6. Magnesium Modifies the Structural Features of Enzymatically Mineralized Collagen Gels Affecting the Retraction Capabilities of Human Dermal Fibroblasts Embedded within This 3D SystemFederica Boraldi, Angelica Bartolomeo, Giulia Annovi, Romain Debret, Daniela Quaglino, 2016, original scientific article Keywords: collagen type I, alkaline phosphatase, fibroblast, three dimensional gel, morphology, mineralization Published in RUNG: 23.08.2019; Views: 3683; Downloads: 0 This document has many files! More... |