Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 13
First pagePrevious page12Next pageLast page
1.
Large-scale cosmic-ray anisotropies with 19 yr of data from the Pierre Auger Observatory
A. Abdul Halim, P. Abreu, M. Aglietta, Ingo Allekotte, K. Almeida Cheminant, Jon Paul Lundquist, Shima Ujjani Shivashankara, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article

Abstract: We present results of the measurement of large-scale anisotropies in the arrival directions of ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation, prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are reconstructed above 4 EeV in four energy bins. Besides the established dipolar anisotropy in right ascension above 8 EeV, the Fourier amplitude of the 8–16 EeV energy bin is now also above the 5σ discovery level. No time variation of the dipole moment above 8 EeV is found, setting an upper limit to the rate of change of such variations of 0.3% per year at the 95% confidence level. Additionally, the results for the angular power spectrum are shown, demonstrating no other statistically significant multipoles. The results for the equatorial dipole component down to 0.03 EeV are presented, using for the first time a data set obtained with a trigger that has been optimized for lower energies. Finally, model predictions are discussed and compared with observations, based on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.6 EeV.
Keywords: ultra–high-energy cosmic rays, UHECRs, UHECR anisotropies, Pierre Auger Observatory, dipolar anisotropy in right ascension, Fourier amplitude analysis, angular power spectrum, equatorial dipole component, UHECR source emission scenarios
Published in RUNG: 26.11.2024; Views: 223; Downloads: 0
.pdf Full text (1,16 MB)
This document has many files! More...

2.
Prospects for a survey of the galactic plane with the Cherenkov Telescope Array
K. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, original scientific article

Abstract: Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission.
Keywords: very-high-energy gamma rays, Cherenkov Telescope Array Observatory, CTAO Galactic Plane Survey, galactic cosmic rays, pulsar wind nebulae, supernova remnants, galactic PeVatrons, binary systems, diffuse emission
Published in RUNG: 28.10.2024; Views: 369; Downloads: 0
.pdf Full text (4,26 MB)
This document has many files! More...

3.
The Cherenkov Telescope Array
Daniel Mazin, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. It will be capable of detecting gamma rays in the energy range from 20 GeV to more than 300 TeV with unprecedented precision in energy and directional reconstruction. With more than 100 telescopes of three different types it will be located in the northern hemisphere at La Palma, Spain, and in the southern at Paranal, Chile. CTA will be one of the largest astronomical infrastructures in the world with open data access and it will address questions in astronomy, astrophysics and fundamental physics in the next decades. In this presentation we will focus on the status of the CTA construction, the status of the telescope prototypes and highlight some of the physics perspectives.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, POpulation Synthesis Theory Integrated project for very high-energy emission
Published in RUNG: 04.12.2023; Views: 1821; Downloads: 6
.pdf Full text (27,92 MB)
This document has many files! More...

4.
POSyTIVE : a GRB population study for the Cherenkov Telescope Array
Maria Grazia Bernardini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, population Synthesis Theory, very high-energy emission
Published in RUNG: 04.12.2023; Views: 2586; Downloads: 3
.pdf Full text (1,50 MB)
This document has many files! More...

5.
First results from the AugerPrime Radio Detector
T. Fodran, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: The Pierre Auger Observatory investigates the properties of the highest-energy cosmic rays with unprecedented precision. The aim of the AugerPrime upgrade is to improve the sensitivity to the primary particle type. The improved mass sensitivity is the key to exploring the origin of the highest-energy particles in the Universe. The purpose of the Radio Detector (as part of AugerPrime) is to extend the sensitivity of the mass measurements to zenith angles in the range from 65° to 85°. A radio antenna, sensitive in two polarization directions and covering a bandwidth from 30 to 80 MHz, will be added to each of the 1661 surface detector stations over the full 3000 km^2 area, forming the world’s largest radio array for the detection of cosmic particles. Since November 2019, an engineering array comprised of ten stations has been installed in the field. The radio antennas are calibrated using the Galactic (diffuse) emission. The sidereal modulation of this signal is monitored continuously and is used to obtain an end-to-end calibration from the receiving antenna to the ADC in the read-out electronics. The calibration method and first results will be presented. The engineering array is also fully integrated in the data acquisition of the Observatory and records air showers regularly. The first air showers detected simultaneously with the water-Cherenkov detectors and the Radio Detectors will be presented. Simulations of the detected showers, based on the reconstructed quantities, have been conducted with CORSIKA/CoREAS. A comparison of the measured radio signals with those predicted by simulations exhibits satisfying agreement.
Keywords: Pierre Auger Observatory, AugerPrime, indirect detection, radio detection, radio antenna array, surface detection, ground array, ultra-high energy, cosmic rays, galactic radio emission
Published in RUNG: 04.10.2023; Views: 1588; Downloads: 7
.pdf Full text (1,62 MB)
This document has many files! More...

6.
7.
8.
High Energy Emission from Gamma Ray Bursts
Lili Yang, invited lecture at foreign university

Abstract: Gamma Ray Bursts (GRBs) are the most energetic explosions in the universe, and they have been proposed as the most promising candidate sources of ultra-high energy cosmic rays (UHECRs). As a result of interactions of UHECR within the host environment and during their propagation towards Earth, high energy neutrinos and photons are also expected from both prompt and afterglow emission. In this talk, I will review the standard theory of particle acceleration and production in a GRB fireball, and multi-wavelength and multi-messeger observations of GRB emission. I will present the prediction of PeV — EeV neutrino production and evidence of GeV gamma ray radiation, and the expected detection in IceCube, Pierre Auger Observatory and CTA (the next generation of Imaging Atmospheric Cherenkov Telescopes). The investigation of high-energy particles will provide insight into the nature and complicated mechanisms of GRBs.
Keywords: Gamma-Ray Bursts, high-energy emission, blastwave afterglow
Published in RUNG: 06.12.2016; Views: 5689; Downloads: 0
This document has many files! More...

9.
10.
Search done in 0.04 sec.
Back to top