1. Detection of gamma-ray sources and search for dark matter signals with Cherenkov Telescope Array surveys : dissertationVeronika Vodeb, 2024, doctoral dissertation Abstract: Gamma rays serve as important messengers in modern astrophysics, offering insights into the most energetic processes in the cosmos. Advancements in gamma-ray astronomy, facilitated by international scientific collaboration, have expanded its reach and capabilities. The Fermi-Large Area Telescope (Fermi-LAT) has so far contributed immensely to our understanding of the gamma-ray sky at GeV energies, surveying numerous source classes. At the same time, ground-based observatories like H.E.S.S., MAGIC, VERITAS, HAWC, and LHASSO, enable the exploration of high-energy (HE) phenomena across various energy scales, reaching the PeV range. The collective data from Fermi-LAT and ground-based instruments provide a comprehensive picture of cosmic phenomena across diverse energy regimes. Efforts to catalog HE gamma-ray sources have resulted in the detection of several thousand sources at GeV, including Pulsar Wind Nebulae (PWNe), Supernova Remnants (SNRs), pulsars, blazars, and Gamma-Ray Bursts (GRBs), with the observational capability to study their spectral and spatial morphology enhancing our understanding of their origin and evolution.
Looking ahead, the Cherenkov Telescope Array (CTA) represents the next frontier in ground-based gamma-ray astronomy. Operating at very high energies (VHE) between 20 GeV and 300 TeV, CTA's improved sensitivity, angular resolution, and expanded field of view (FoV) promise enhanced imaging of extended sources and performance of large-scale surveys. CTA's Key Science Projects (KSPs) include the Extragalactic (EGAL) survey, a survey of a quarter of the extragalactic sky, and the Galactic Plane Survey (GPS), a survey of the entire Galactic Plane (GP). The KSPs will receive dedicated observation time and careful planning to ensure the optimization of their scientific output. As CTA is currently entering the construction phase, simulations are being extensively employed to predict its response to various signals, playing a vital role in comprehending CTA's response and sensitivity to different signals. The derived predictions are paving the way for estimating the CTA's scientific output, informing the observational strategy, and ensuring its success in maximizing the contribution to HE gamma-ray astronomy.
In this thesis, I contribute to assessing the sensitivity of the CTA surveys, particularly the GPS and the EGAL survey, to diverse astrophysical sources and signals. Focusing on the GPS, I delve into understanding the detectability of pulsar halos, which emit multi-TeV gamma rays, the detection of which was recently reported by the HAWC Observatory. The study involves a spatial-spectral likelihood analysis, evaluating sensitivity to simple Gaussian extended sources and physically modeled sources. Employing a template-fitting approach, I analyze CTA's GPS sensitivity to extended sources and explore the prospects for pulsar halo detection and characterization. A preliminary population study addresses the visibility of pulsar halos to CTA's GPS and explores the angular sensitivity to extended sources. The thesis sets the detectability prospects of pulsar halos with CTA and investigates what fraction of the preliminary pulsar halo population CTA will be able to probe.
The thesis extends its exploration into the persistent mystery of dark matter (DM), a fundamental puzzle in cosmology. The search for DM signals remains a vigorous pursuit in the physics community, utilizing various astrophysical messengers resulting from DM particle annihilation or decay. I investigate the potential of CTA's GPS to detect dark sub-halos within our galaxy, utilizing a similar approach as in the sensitivity assessment to pulsar halos, applied to recent sub-halo population simulations. Furthermore, the thesis addresses the intricate task of disentangling DM components from astrophysical contributions in the observed gamma-ray sky. In terms of the EGAL survey, employing advanced statistical methods such as the cross-correlation technique, I explore the prospects of using CTA's EGAL survey to correlate the Extragalactic Gamma-ray Background (EGRB) with galaxy catalogs, providing insights into DM properties.
While traditional methods rely on likelihood analysis with background subtraction or template fitting, the emergence of supervised machine learning (ML) offers a novel, potentially more effective approach for cataloging the sky. The thesis touches upon the usability of ML in the high and VHE gamma-ray sky. My study focuses on CTA's GPS and utilizes deep-learning-based algorithms in a detection pipeline for the automatic classification of extended sources from gamma-ray data.
As CTA stands at the forefront of gamma-ray astronomy as the next-generation observatory, the research presented in this thesis contributes a small step towards answering the open questions about pulsar halos and DM, showcasing the potential breakthroughs that may emerge from CTA's observations. The detailed likelihood analysis performed aims to advance our understanding of these enigmas, from the physical intricacies of pulsar halos to the elusive nature of DM, driven by curiosity about the continuous exploration of the Universe's mysteries. Keywords: high-energy gamma-ray astronomy, astroparticle physics, Cherenkov Telescope Array, pulsar halos, dark matter, dissertations Published in RUNG: 06.06.2024; Views: 965; Downloads: 11 Full text (36,25 MB) |
2. Sensitivity to keV-MeV dark matter from cosmic-ray scattering with current and the upcoming ground-based arrays CTA and SWGOIgor Reis, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution Abstract: A wealth of astrophysical and cosmological observational evidence shows that the matter content of the universe is made of about 85% of non-baryonic dark matter. Huge experimental efforts have been deployed to look for the direct detection of dark matter via their scattering on target nucleons, their production in colliders, and their indirect detection via their annihilation products. Inelastic scattering of high-energy cosmic rays off dark matter particles populating the Milky Way halo would produce secondary gamma rays in the final state from the decay of the neutral pions produced in such interactions, providing a new avenue to probe dark matter properties. We compute here the sensitivity for H.E.S.S.-like observatory, a current-generation ground-based Cherenkov telescopes, to the expected gamma-ray flux from collisions of Galactic cosmic rays and dark matter in the center of the Milky Way. We also derive sensitivity prospects for the upcoming Cherenkov Telescope Array (CTA) and Southern Wide-field Gamma-ray Observatory (SWGO). The expected sensitivity allows us to probe a poorly-constrained range of dark matter masses so far, ranging from keV to sub-GeV, and provide complementary constraints on the dark matter-proton scattering cross section traditionally probed by deep underground direct dark matter experiments. Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning Published in RUNG: 26.09.2023; Views: 1749; Downloads: 8 Full text (713,85 KB) This document has many files! More... |
3. Detecting and characterizing pulsar halos with the Cherenkov Telescope Array ObservatoryChristopher Eckner, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution Abstract: The recently identified source class of pulsar halos may be populated and bright enough at TeV energies to constitute a large fraction of the sources that will be observed with the Cherenkov Telescope Array (CTA), especially in the context of the planned Galactic Plane Survey (GPS). In this study, we examine the prospects offered by CTA for the detection and characterization of such objects. CTA will cover energies from 20 GeV to 300 TeV, bridging the ranges already probed with the Fermi Large Area Telescope and High Altitude Water Cherenkov Observatory, and will also have a better angular resolution than the latter instruments, thus providing a complementary look at the phenomenon. From simple models for individual pulsar halos and their population in the Milky Way, we examine under which conditions such sources can be detected and studied from the GPS observations. In the framework of a full spatial-spectral likelihood analysis, using the most recent estimates for the instrument response function and prototypes for the science tools, we derive the spectral and morphological sensitivity of the CTA GPS to the specific intensity distribution of pulsar halos. From these, we quantify the physical parameters for which pulsar halos can be detected, identified, and characterized, and what fraction of the Galactic population could be accessible. We also discuss the effect of interstellar emission and data analysis systematics on these prospects. Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning Published in RUNG: 26.09.2023; Views: 1457; Downloads: 8 Full text (2,20 MB) This document has many files! More... |
4. Performance update of an event-type based analysis for the Cherenkov Telescope ArrayJ. Bernete, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution Abstract: The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. The traditional approach to data analysis in this field is to apply quality cuts, optimized using Monte Carlo simulations, on the data acquired to maximize sensitivity. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs) to physically interpret the results. However, an alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. This approach divides events into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. In previous works we demonstrated that event types, classified using Machine Learning methods according to their expected angular reconstruction quality, have the potential to significantly improve the CTA angular and energy resolution of a point-like source analysis. Now, we validated the production of event-type wise full-enclosure IRFs, ready to be used with science tools (such as Gammapy and ctools). We will report on the impact of using such an event-type classification on CTA high-level performance, compared to the traditional procedure. Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning Published in RUNG: 26.09.2023; Views: 1854; Downloads: 8 Full text (1,08 MB) This document has many files! More... |
5. Identification of point sources in gamma rays using U-shaped convolutional neural networks and a data challengeBoris Panes, Christopher Eckner, Luc Hendriks, Sascha Caron, Klaas Dijkstra, Gudlaugur Johannesson, Roberto Ruiz de Austri, Gabrijela Zaharijas, 2021, original scientific article Keywords: gamma rays, astroparticle physics, data analysis Published in RUNG: 17.02.2022; Views: 2759; Downloads: 8 Link to full text This document has many files! More... |
6. |