Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Measurement of the mass composition of ultra-high-energy cosmic rays at the Pierre Auger Observatory
Eric Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: After nearly 20 years of data-taking, the measurements made with the Pierre Auger Observatory represent the largest collection of ultra-high-energy cosmic ray (UHECR) data so far assembled from a single instrument. Exploring this data set led to a deeper understanding of the UHECR flux and many surprises. In particular, studies aiming to investigate and leverage the mass composition of UHECRs have played an important role in empowering discovery. This contribution will present an overview of the analyses of primary mass composition carried out during the first phase of the Observatory. The overview includes analyses derived from measurements made by the surface, fluorescence, and radio detectors covering energies ranging from 0.1 EeV up to 100 EeV. Special attention will be given to recent advances and results to provide a complete picture of UHECR mass composition at the Observatory as it moves to its next phase, AugerPrime. Additionally, specific updates will be given to studies focusing on mass trends from surface detector rise-times, �max dependent anisotropies, and UHECR beam characterization using the correlation between �max and signal amplitudes at the ground.
Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector
Published in RUNG: 23.01.2024; Views: 663; Downloads: 4
.pdf Full text (1,03 MB)
This document has many files! More...

2.
Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory
Marvin Gottowik, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: In this proceeding, we present a proof of principle study for estimating the number of muons of inclined air showers proportional to their energy using hybrid radio and particle detection. We use the radiation energy of an air shower to estimate its electromagnetic energy and measure the muon number independently with the water-Cherenkov detector array (WCD) of the Pierre Auger Observatory. We select 32 high-quality events in almost six years of data with electromagnetic energies above 4 EeV to ensure full efficiency for the WCD reconstruction. The muon content in data is found to be compatible with the one for an iron primary as predicted by current-generation hadronic interaction models. This can be interpreted as a deficit of muons in simulations as a lighter mass composition is expected from �max measurements. Such a muon deficit was already observed in previous analyses of the Auger collaboration and is now confirmed for the first time with radio data. Currently, this analysis is limited by low statistics due to the small area of AERA of 17 km^2 and the high energy threshold. We will outline the advantages of using radio detection instead of the Auger Fluorescence Detector in future analyses allowing for high-statistic measurements of the muon content as a function of energy.
Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector
Published in RUNG: 23.01.2024; Views: 652; Downloads: 6
.pdf Full text (1,49 MB)
This document has many files! More...

3.
4.
5.
Revealing local failed supernovae with neutrino telescopes
Lili Yang, Cecilia Lunardini, 2011, original scientific article

Keywords: neutrinos, failed supernova, Mt water detector
Published in RUNG: 09.05.2017; Views: 4981; Downloads: 154
URL Link to full text

6.
Measurement of the water-Cherenkov detector response to inclined muons using an RPC hodoscope
Pedro Assis, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: The Pierre Auger Observatory operates a hybrid detector composed of a Fluorescence Detector and a Surface Detector array. Water-Cherenkov detectors (WCD) are the building blocks of the array and as such play a key role in the detection of secondary particles at the ground. A good knowledge of the detector response is of paramount importance to lower systematic uncertainties and thus to increase the capability of the experiment in determining the muon content of the extensive air showers with a higher precision. In this work we report on a detailed study of the detector response to single muons as a function of their trajectories in the WCD. A dedicated Resistive Plate Chambers (RPC) hodoscope was built and installed around one of the detectors. The hodoscope is formed by two stand-alone low gas flux segmented RPC detectors with the test water-Cherenkov detector placed in between. The segmentation of the RPC detectors is of the order of 10 cm. The hodoscope is used to trigger and select single muon events in different geometries. The signal recorded in the water-Cherenkov detector and performance estimators were studied as a function of the trajectories of the muons and compared with a dedicated simulation. An agreement at the percent level was found, showing that the simulation correctly describes the tank response.
Keywords: Pierre Auger Observatory, Water-Cherenkov detectors, detector calibration, inclined cosmic ray muons, Resistive Plate Chambers (RPC) hodoscope
Published in RUNG: 03.03.2016; Views: 5080; Downloads: 198
.pdf Full text (1,27 MB)

Search done in 0.03 sec.
Back to top