1. Nickel-decorated ZnO nanoparticles for effective solar reduction of hexavalent chromium and removal of selected pharmaceuticalsMiha Ravbar, Ksenija Maver, Tilen Knaflič, Iztok Arčon, Nataša Novak Tušar, Urška Lavrenčič Štangar, Andraž Šuligoj, 2025, original scientific article Abstract: The efficient visible light driven photocatalytic reduction of hexavalent chromium, Cr(VI) was demonstrated using ZnO nanoparticles (NPs) decorated with oxo-clusters of transition metals. The ZnO NPs were synthesized by a facile one-pot solvothermal synthesis followed by a fast microwave-assisted (MW) grafting of transition metals on the surface of NPs. Nickel was found to be the most active transition metal for photocatalytic activity as demonstrated by reduction of Cr(VI) to Cr(III). The optimally grafted samples contained 0.5 wt% Ni and increased photocatalytic activity by almost one-fold. The oxo-clusters did not enter the lattice of ZnO but rather resided on the surface and their efficient bonding to the ZnO surface was proved by Raman, TEM and X-Ray absorption techniques. Influence of MW power was studied and shown that excessive power load leads to formation of elongated structures of ZnO which decreases the photocatalytic activity. It was demonstrated by measuring fluorescent radical products that electrons, efficiently transferred via oxygen, were the main active species in combination with the unchanged oxidation power of holes and • OH in the grafted samples. The applicability of the materials was tested in immobilized plug flow photoreactor system degrading five pharmaceuticals simultaneously where their long-term use was shown. Keywords: Zinc oxide, Pharmaceuticals, Grafting, Cr(VI), Zn XANES, Zn EXAFS Published in RUNG: 24.10.2024; Views: 355; Downloads: 5 Full text (4,49 MB) This document has many files! More... |
2. |
3. |
4. |
5. Development of Zinc Oxide-Multi-Walled Carbon Nanotube hybrid nanofluid for energy-efficient heat transfer application: A thermal lens studyMohanachandran Nair Sindhu Swapna, 2021, original scientific article Abstract: This paper addresses the need for developing an energy-efficient hybrid nanofluid with zinc oxide–multi-walled carbon nanotube (ZnO-MWCNT) for overcoming the bottleneck of efficient heat transfer in thermal systems. The concentration-dependent thermal diffusivity modifications are analyzed using the highly sensitive mode mismatched thermal lens technique. The hybrid composite is prepared by the solid-state mixing and annealing of a pure multi-walled carbon nanotube (MWCNT) and zinc oxide (ZnO), synthesized by the solution combustion method. The composite formation is studied by structural, morphological, and optical characterization techniques. Among the three nanofluids ZnO, MWCNT, and ZnO-MWCNT, the composite exhibits a drastic enhancement in thermal diffusivity at a lower solid volume fraction of 0.047 mg/ml containing 0.009 mg/ml of MWCNT. All the nanofluids show an optimum concentration beyond which the thermal diffusivity decreases with the nanoparticle concentration. Thus, this study suggests the potential application of ZnO-MWCNT hybrid nanofluids in thermal system design to enhance internal combustion engines' efficiency during cold-start. Keywords: Zinc Oxide, MWCNT, hybrid nanofluid, thermal lens, diffusivity, engine efficiency Published in RUNG: 30.06.2022; Views: 2481; Downloads: 0 This document has many files! More... |
6. Synthesis and characterization of metal/semiconductor nanocomposites for photocatalysisTina Mavrič, doctoral dissertation Abstract: The doctoral dissertation focused on improving photocatalytic activity of nanopowdered ZnO by constructing I) Metal-Semiconductor and II) Semiconductor-Semiconductor heterostructures. Both heterostructure types have been reported to have a beneficial effect on photocatalytic efficiency. For the first part (I) Ag/ZnO nanocomposite was synthesized. Here we investigated an influence of polyvinylpyrrolidone (PVP) addition during the synthesis on the particle properties and their photoactivity. The second part (II) describes procedure development of ZnO based semiconductor-semiconductor composite that resulted in synthesis of highly efficient ZnO/CuWO4 composite.
Ag/ZnO nanocomposite was synthesized from precursors in ethylene glycol (EG) in a hydrothermal reactor at 180 °C for 3h. No further thermal treatment was required after the synthesis since all samples showed good crystallinity. Silver precursor loading was 2.7 wt%, because this amount has shown the best photoactivity in preliminary sample testings. Two separate batches of Ag/ZnO nanopowders were prepared, one with addition of PVP, one without (labelled Ag/ZnO and Ag/ZnO*, respectively). All powders were in nanometer range, TEM images showed a major difference between the samples with and without PVP. While Ag nanoparticles were deposited uniformly over ZnO, Ag/ZnO* exhibited a substantial agglomeration of Ag. The photocatalytic efficiency was assessed under UV-Vis light. Ag/ZnO reached complete decolourization of 10–5 M methyl orange (MO) already in 80 min after the beginning of irradiation. The calculated degradation rate constant (k) for the Ag/ZnO was almost 2-times larger than for TiO2 P25 and 4-times larger than for ZnO. Ag/ZnO* also showed higher activity than pure ZnO*, but was inferior to Ag/ZnO (1.6-times of Ag/ZnO*). A reusability test performed on Ag/ZnO showed an excellent photoactivity of reused powders; second and third cycle exhibited higher photoactivity than the first cycle. The supreme photocatalytic activity of Ag/ZnO was also confirmed by degradation of terephthalic acid.
To develop an efficient semiconductor-semiconductor heterostructure we have synthesized a combination of several materials with ZnO. We performed preliminary photocatalytic tests in order to assess the functionality of these heterostructures. The tested systems were the following: ZnO/MWCNT, ZnO/GO, ZnO/SiC, ZnO/Co3O4, ZnO/AgVO3. The synthesis of heterostructures was done via hydrothermal synthesis. The commercial or synthesized powers were dispersed together with the ZnO precursor in EG medium (180 °C/3h). The aim was to obtain higher photoactivity than that of pure ZnO. None of these systems was able to outperform pure ZnO.
ZnO/CuWO4 system has, however, significantly improved ZnO photoactivity. Several synthesis routes were investigated, including the influence of different structure directing agents (PVP, CTAB, starch). The best performing system was obtained by separate hydrothermal synthesis of ZnO and CuWO4 in water with PVP. XRD analysis confirmed that to obtain the crystalline CuWO4 thermal treatment (500 °C) is needed. The heterostructure was also synthesized in ethanolic solution. ZnO particles were in a nanometer range, CuWO4 were larger and ranged from 200 to 400 nm. CuWO4 has successfully decreased the charge recombination in ZnO, which was confirmed by transient absorption spectroscopy studies. The photocatalytic activity was assessed for both MO and TPA (10–4 M) degradation. The ZnO/CuWO4 composite has completely decolourized the dye in 60 min of UV-Vis irradiation. k for ZnO/CuWO4 was ~2.5-times larger than that of ZnO. A 3-cycle reusability test with MO showed a small decrease in efficiency in the last cycle. TPA degradation has revealed lower efficiency for ZnO/CuWO4 in air but high efficiency in O2 and N2 atmosphere, where it reached 90% and 55% degradation rate, respectively. Keywords: photocatalysis, zinc oxide, heterostructures, powders, Ag/ZnO composites, ZnO/CuWO4 composites Published in RUNG: 31.05.2017; Views: 7521; Downloads: 366 Full text (4,11 MB) |
7. |
8. |