41. Chasing gravitational waves with the Cherenkov Telescope ArrayJ. G. Green, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution Abstract: The detection of gravitational waves (GWs) from a binary neutron star (BNS) merger by Advanced
LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts
of this GW event, ushered in a new era of multimessenger astronomy, providing the first
direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events
may also produce very-high-energy (VHE, > 100 GeV) photons which have yet to be detected
in coincidence with a GW signal. The Cherenkov Telescope Array (CTA) is a next-generation
VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity
and ability to slew anywhere on the sky within a few tens of seconds. Achieving such a feat
will require a comprehensive real-time strategy capable of coordinating searches over potentially
very large regions of the sky. This work will evaluate and provide estimations on the number of
GW-CTA events determined from simulated BNS systems and short GRBs, considering both on and
off-axis emission. In addition, we will present and discuss the prospects of potential follow-up
strategies with CTA. Keywords: gravitational waves, binary neutron star merger, short gamma-ray bursts Published in RUNG: 15.09.2023; Views: 2404; Downloads: 12
Full text (1,66 MB) This document has many files! More... |
42. Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic CloudA. Acharyya, R. Adam, Saptashwa Bhattacharyya, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, original scientific article Abstract: A deep survey of the Large Magellanic Cloud at ∼ 0.1−100 TeV photon energies with the Cherenkov Telescope Array is planned.
We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters,
mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered
objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3−2.4 pending a flux increase by a factor > 3−4 over ∼ 2015−2035. Large-scale interstellar emission remains mostly out of reach of the survey if its > 10 GeV spectrum has a soft photon index ∼ 2.7, but degree-scale 0.1 − 10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1 − 10% of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within < 100 pc. Finally, the survey could probe the canonical velocity-averaged cross section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles. Keywords: very-high energy (VHE) gamma-rays, Cherenkov Telescope Array Observatory, Large Magellanic Cloud, pulsar wind nebulas, galaxiesstar-forming regions, cosmic rays, dark matter Published in RUNG: 02.06.2023; Views: 3211; Downloads: 4
Full text (3,66 MB) |
43. Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova RemnantsFabio Acero, Saptashwa Bhattacharyya, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, original scientific article Keywords: gamma-rays, cosmic rays, Galactic PeVatrons, Galactic supernova remnants, Cherenkov Telescope Array Published in RUNG: 14.04.2023; Views: 2812; Downloads: 0 This document has many files! More... |
44. Observation of the Cumbre Vieja volcano plume above the Observatorio del Roque de los Muchachos with the Barcelona Raman LIDARMiha Živec, Otger Ballester, Oscar Blanch, Juan Boix, Paolo G. Calisse, Anna Campoy Ordaz, Michele Doro, Lluis Font, Rafael Garcia, Markus Gaug, Roger Grau, Manel Martinez, David Roman, Samo Stanič, Santiago Ubach Ramírez, Marko Zavrtanik, 2022, published scientific conference contribution Keywords: lidar, remote sensing, CTA, CTAO, Cumbre Vieja, atmospheric monitoring, volcano Published in RUNG: 13.02.2023; Views: 2434; Downloads: 24
Full text (3,49 MB) |
45. |
46. Bioaerosol partitioning between the interstitial and condensed phase in mixed-phase clouds : lecture NOSA Symposium 2021, March 16th 2021, onlineTina Šantl Temkiv, Miha Živec, Mojca Benčina, Samo Stanič, Griša Močnik, 2021, unpublished conference contribution Keywords: bioaerosol, aerosol, mixed-phase clouds, LIDAR Published in RUNG: 22.11.2021; Views: 3073; Downloads: 48
Link to full text This document has many files! More... |
47. |
48. Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagationH. Abdalla, H. Abe, Fabio Acero, A. Acharyya, R. Adam, Christopher Eckner, Samo Stanič, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, original scientific article Abstract: The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology. Keywords: Cherenkov Telescope Array, active galactic nuclei, gamma-ray experiments, axions, extragalactic magnetic fields Published in RUNG: 02.03.2021; Views: 3675; Downloads: 75
Link to full text This document has many files! More... |
49. Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centreA. Acharyya, R. Adam, C. Adams, I. Agudo, A. Aguirre-Santaella, Christopher Eckner, Samo Stanič, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, original scientific article Keywords: dark matter, gamma ray, astrophysics Published in RUNG: 26.02.2021; Views: 3737; Downloads: 145
Link to full text This document has many files! More... |
50. |