11. Real-time monitoring of Arundo donax response to saline stress through the application of in vivo sensing technologyJanni Michela, Claudia Cocozza, Federico Brilli, Sara Pignattelli, Filippo Vurro, Nicola Coppede, Manuele Bettelli, Davide Calestani, Francesco Loreto, Andrea Zappettini, 2021, original scientific article Abstract: One of the main impacts of climate change on agriculture production is the dramatic increase of saline (Na+) content in substrate, that will impair crop performance and productivity. Here we demonstrate how the application of smart technologies such as an in vivo sensor, termed bioristor, allows to continuously monitor in real-time the dynamic changes of ion concentration in the sap of Arundo donax L. (common name giant reed or giant cane), when exposed to a progressive salinity stress. Data collected in vivo by bioristor sensors inserted at two different heights into A. donax stems enabled us to detect the early phases of stress response upon increasing salinity. Indeed, the continuous time-series of data recorded by the bioristor returned a specific signal which correlated with Na+ content in leaves of Na-stressed plants, opening a new perspective for its application as a tool for in vivo plant phenotyping and selection of genotypes more suitable for the exploitation of saline soils. Keywords: Arundo donax, saline stress, vivo sensing technology Published in RUNG: 17.12.2021; Views: 2881; Downloads: 20
Link to full text This document has many files! More... |
12. "Umetnost je zgodovina napak, ki pa so poetične, ki delujejo kot nekaj izvirnega. Za vsemi napakmi se skrivajo zgodbe." : "UMETNOST JE ZGODOVINA NAPAK, KI PA SO POETIČNE, KI DELUJEJO KOT NEKAJ IZVIRNEGA. ZA VSEMI NAPAKMI SE SKRIVAJO ZGODBE."2021, radio or television broadcast, podcast, interview, press conference Abstract: Med gosti letošnjega festivala Fabula – Literature sveta je leta 1984 rojena italijanska pisateljica Claudia Durastanti. V slovenščino imamo preveden njen roman Tujka, avtofikcijsko pripoved, ki se začne z odraščanjem ob gluhih starših; odvija se od New Yorka, prek revne južne Italije do Rima in Londona – hkrati pa gre za razmisleke o identiteti, umetnosti in življenju. Keywords: italijanske pisateljice, romani, intervjuji Published in RUNG: 05.11.2021; Views: 2504; Downloads: 9
Link to full text This document has many files! More... |
13. |
14. Silver nanoparticles enter the tree stem faster through leaves than through rootsClaudia Cocozza, Annalisa Perone, Cristiana Giordano, Maria Cristina Salvatici, Sara Pignattelli, Aida Raio, Marcus Schaub, Kruno Sever, John L. Innes, Roberto Tognetti, Paolo Cherubini, 2019, original scientific article Abstract: A major environmental pollution problem is the release into the atmosphere of particulate matter, including nanoparticles (NPs), which causes serious hazards to human and ecosystem health, particularly in urban areas. However, knowledge about the uptake, translocation and accumulation of NPs in plant tissues is almost completely lacking. The uptake of silver nanoparticles (Ag-NPs) and their transport and accumulation in the leaves, stems and roots of three different tree species, downy oak (Quercus pubescens Willd.), Scots pine (Pinus sylvestris L.) and black poplar (Populus nigra L.), were assessed. In the experiment, Ag- NPs were supplied separately to the leaves (via spraying, the foliar treatment) and roots (via watering, the root treatment) of the three species. Uptake, transport and accumulation of Ag were investigated through spectroscopy. The concentration of Ag in the stem was higher in the foliar than in the root treatment, and
in poplar more than in oak and pine. Foliar treatment with Ag-NPs reduced aboveground biomass and stem length in poplars, but not in oaks or pines. Species-specific signals of oxidative stress were observed; foliar treatment of oak caused the accumulation of H2O2 in leaves, and both foliar and root treatments of poplar led to increased O2− in leaves.
Ag-NPs affected leaf and root bacteria and fungi; in the case of leaves, foliar treatment reduced bacterial populations in
oak and poplar and fungi populations in pine, and in the case of roots, root treatment reduced bacteria and increased fungi in poplar. Species-specific mechanisms of interaction, transport, allocation and storage of NPs in trees were found.
We demonstrated definitively that NPs enter into the tree stem through leaves faster than through roots in all of the
investigated tree species. Keywords: Ag-NPs, pathway of uptake, Pinus sylvestris L., Populus nigra L., Quercus pubescens Willd. Published in RUNG: 20.04.2020; Views: 4511; Downloads: 0 This document has many files! More... |
15. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plantsClaudia Cocozza, Federico Brilli, Laura Miozzi, Sara Pignattelli, Silvia Rotunno, Cecilia Brunetti, Cristiana Giordano, Susanna Pollastri, Mauro Centritto, Gian Paolo Accotto, Roberto Tognetti, Francesco Loreto, 2019, original scientific article Abstract: The potential of Arundo donax to grow in degraded soils, characterized by excess of salinity (Na+), and phosphorus
deficiency (-P) or excess (+P) also coupled with salinity (+NaP), was investigated by combining in vivo
plant phenotyping, quantification of metabolites and ultrastructural imaging of leaves with a transcriptome-wide
screening. Photosynthesis and growth were impaired by+Na, -P and+NaP. While+Na caused stomatal
closure, enhanced biosynthesis of carotenoids, sucrose and isoprene and impaired anatomy of cell walls, +P
negatively affected starch production and isoprene emission, and damaged chloroplasts. Finally, +NaP largely
inhibited photosynthesis due to stomatal limitations, increased sugar content, induced/repressed a number of
genes 10 time higher with respect to+P and+Na, and caused appearance of numerous and large plastoglobules
and starch granules in chloroplasts. Our results show that A. donax is sensitive to unbalances of soil ion
content, despite activation of defensive mechanisms that enhance plant resilience, growth and biomass production
of A. donax under these conditions. Keywords: Abiotic stress
Giant reed
Isoprene emission
Phosphorus
Salinity
Transcriptome Published in RUNG: 20.04.2020; Views: 3974; Downloads: 0 This document has many files! More... |
16. The excess of phosphorus in soil reduces physiological performances over time but enhances prompt recovery of salt-stressed Arundo donax plantsClaudia Cocozza, Federico Brilli, Sara Pignattelli, Susanna Pollastri, Cecilia Brunetti, Cristina Gonnelli, Roberto Tognetti, Mauro Centritto, Francesco Loreto, 2020, original scientific article Abstract: Arundo donax L. is an invasive grass species with high tolerance to a wide range of environmental stresses. The
response of potted A. donax plants to soil stress characterized by prolonged exposure (43 days) to salinity (+Na),
to high concentration of phosphorus (+P), and to the combination of high Na and P (+NaP) followed by 14 days
of recovery under optimal nutrient solution, was investigated along the entire time-course of the experiment.
After an exposure of 43 days, salinity induced a progressive decline in stomatal conductance that hampered A.
donax growth through diffusional limitations to photosynthesis and, when combined with high P, reduced the
electron transport rate. Isoprene emission from A. donax leaves was stimulated as Na+ concentration raised in
leaves. Prolonged growth in P-enriched substrate did not significantly affect A. donax performance, but decreased
isoprene emission from leaves. Prolonged exposure of A. donax to + NaP increased the leaf level of
H2O2, stimulated the production of carbohydrates, phenylpropanoids, zeaxanthin and increased the de-epoxidation
state of the xanthophylls. This might have resulted in a higher stress tolerance that allowed a fast and full
recovery following stress relief. Moreover, the high amount of ABA-glucose ester accumulated in leaves of A.
donax exposed to + NaP might have favored stomata re-opening further sustaining the observed prompt recovery
of photosynthesis. Therefore, prolonged exposure to high P exacerbated the negative effects of salt stress
in A. donax plants photosynthetic performances, but enhanced activation of physiological mechanisms that allowed
a prompt and full recovery after stress. Keywords: Arundo donax
Phosphorus
Salinity
Stress tolerance
Biomass production Published in RUNG: 20.04.2020; Views: 4166; Downloads: 0 This document has many files! More... |
17. Scanning Photoelectron Spectro‐Microscopy: A Modern Tool for the Study of Materials at the NanoscalePatrick Zeller, Matteo Amati, Hikmet Sezen, Mattia Scardamaglia, Claudia Struzzi, Carla Bittencourt, Gabriel Lantz, Mahdi Hajlaoui, Evangelos Papalazarou, Marino Marsi, Mattia Fanetti, Stefano Ambrosini, Silvia Rubini, Luca Gregoratti, 2018, review article Keywords: Scanning photoemission microscopy, graphene, GaAs, nanowires, Fermi Level, Mott-Hubbard transition Published in RUNG: 07.12.2018; Views: 5501; Downloads: 0 This document has many files! More... |
18. Pursuing the stabilisation of crystalline nanostructured magnetic manganites through a green low temperature hydrothermal synthesisArianna Minelli, Paolo Dolcet, Stefano Diodati, Sandra Gardonio, Claudia Innocenti, Denis Badocco, Stefano Gialanella, Paolo Pastore, Luciano Pandolfo, Andrea Caneschi, Angela Trapanati, Silvia Gross, 2017, original scientific article Abstract: A quick, easy and green water-based synthesis protocol involving coprecipitation of oxalates combined with hydrothermal treatment resulted in the crystallisation of nanostructured manganites at a relatively low temperature (180 °C). The subcritical hydrothermal approach was shown to play a key role in stabilising phases which are generally achieved at much higher temperatures and under harsher conditions, thus disclosing an exciting alternative for their synthesis. Through this mild wet chemistry approach, the compounds CuMnO2, ZnMn2O4 and ZnMnO3 were synthesised as nanocrystalline powders. Noticeably, the optimised route proved to be effective in stabilising the exotic polymorph cubic spinel ZnMnO3 in pure form. This is particularly notable, as very few records concerning this compound are available in the literature. The compounds were fully characterised from compositional, structural, morphological and magnetic points of view. Keywords: nanostructured manganites, low temperature wet chemistry synthesis Published in RUNG: 28.03.2017; Views: 5481; Downloads: 0 This document has many files! More... |
19. An extracellular polymeric substance quickly chelates mercury(II) with N-heterocyclic groupsFranco Baldi, Michele Gallo, Salvatore Daniale, Dario Battistel, Claudia Faleri, Alojz Kodre, Iztok Arčon, 2017, original scientific article Abstract: A strain of Klebsiella oxytoca DSM 29614 is grown on sodium citrate in the presence of 50 mg l−1 of Hg as Hg(NO3)2. During growth, the strain produces an extracellular polymeric substance (EPS), constituted by a mixture of proteins and a specific exopolysaccharide. The protein components, derived from the outer membrane of cells, are co-extracted with the extracellular exopolysaccharide using ethanol. The extracted EPS contains 7.5% of Hg (total amount). This indicates that EPS is an excellent material for the biosorption of Hg2+, through chemical complexation with the EPS components. The binding capacity of these species towards Hg2+ is studied by cyclic voltammetry, and Hg L3-edge XANES and EXAFS spectroscopy. The results found indicate that Hg2+ is mainly bound to the nitrogen of the imidazole ring or other N-heterocycle compounds. The hydroxyl moities of sugars and/or the carboxyl groups of two glucuronic acids in the polysaccharide can also play an important role in sequestring Hg2+ ions. However, N-heterocyclic groups of proteins bind Hg2+ faster than hydroxyl and carboxyl groups of the polysaccharide. Keywords: Klebsiella oxytoca, Biosorption, Proteins, Polysaccharide, Cyclic voltammetry, EXAFS analysis Published in RUNG: 03.03.2017; Views: 6049; Downloads: 0 This document has many files! More... |
20. |