1. New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick-Baez active optical system KAOSLuka Novinec, Matteo Pancaldi, Flavio Capotondi, Giovanni De Ninno, Francesco Guzzi, George Kourousias, Emanuele Pedersoli, Barbara Ressel, Benedikt Rösner, Alberto Simoncig, 2024, original scientific article Abstract: Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick–Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions. Keywords: tailored photonics beams, orbital angular momentum of light, wavefront sensing, ptychography Published in RUNG: 19.08.2024; Views: 401; Downloads: 2 Full text (10,31 MB) This document has many files! More... |
2. |
3. Uncovering the nature of transient and metastable nonequilibrium phases in 1T − ▫$TaS_2$ ▫Tanusree Saha, Arindam Pramanik, Barbara Ressel, Alessandra Ciavardini, Fabio Frassetto, Federico Galdenzi, Luca Poletto, Arun Ravindran, Primož Rebernik Ribič, Giovanni De Ninno, 2023, original scientific article Abstract: Complex systems are characterized by strong coupling between different microscopic degrees of freedom. Photoexcitation of such materials can drive them into new transient and metastable hidden phases that may not have any counterparts in equilibrium. By exploiting femtosecond time- and angle-resolved photoemission spectroscopy, we probe the photoinduced transient phase and the recovery dynamics of the ground state in a complex material: the charge density wave (CDW)–Mott insulator 1T-TaS2. We reveal striking similarities between the band structures of the transient phase and the (equilibrium) structurally undistorted metallic phase, with evidence for the coexistence of the low-temperature Mott insulating phase and high-temperature metallic phase. Following the transient phase, we find that the restorations of the Mott and CDW orders begin around the same time. This highlights that the Mott transition is tied to the CDW structural distortion, although earlier studies have shown that the collapses of Mott and CDW phases are decoupled from each other. Interestingly, as the suppressed order starts to recover, a metastable phase emerges before the material recovers to the ground state. Our results demonstrate that it is the CDW lattice order that drives the material into this metastable phase, which is indeed a commensurate CDW–Mott insulating phase but with a smaller CDW amplitude. Moreover, we find that the metastable phase emerges only under strong photoexcitation (∼3.6 mJ/cm2) and has no evidence when the photoexcitation strength is weak (∼1.2 mJ/cm2). Keywords: angle resolved photoemission, time resolved photoemission, 2D materials, charge density wave, Mott insulator Published in RUNG: 15.01.2024; Views: 1332; Downloads: 5 Full text (2,30 MB) This document has many files! More... |
4. Modulation of charge transfer exciton dynamics in organic semiconductors using different structural arrangementsCristian Soncini, Abhishek Kumar, Federica Bondino, Elena Magnano, Matija Stupar, Barbara Ressel, Giovanni De Ninno, Antonis Papadopoulos, Efthymis Serpetzoglou, Emmanuel Stratakis, Maddalena Pedio, 2023, original scientific article Abstract: In devices based on organic semiconductors, aggregation and inter-molecular interactions play a key role in affecting the photo-physical and dynamical carrier properties of the material, potentially becoming a limiting factor to achieving high efficiency. As a consequence, a detailed understanding of the interplay between the film molecular structure and the material properties is essential to properly
design devices with optimized performance. Here we demonstrate how different molecular structural arrangements modulate the charge transfer (CT) dynamics in cobalt phthalocyanine (CoPc) thin films. By transient absorption spectroscopy and time-resolved photoemission spectroscopy, we study the influence of different CoPc structures on the dynamical electronic properties, the CoPc intra and inter- molecular de-excitation pathways up to 7 ns. We rationalize the ultrafast formation of triplet states in the CoPc through an electron exchange process between the single-occupied Co3dz2 orbital and p orbitals of the macrocycle, which obviate for an energetically unfavourable spin-flip. We found enhanced CT exciton lifetime in the case of the herringbone structure with respect to the brickwork one, possibly explainable by a more efficient CT exciton delocalization along the stacking axis. Keywords: charge transfer, organic molecules, time resolved spectroscopies Published in RUNG: 30.06.2023; Views: 1799; Downloads: 7 Link to file This document has many files! More... |
5. ULTRAFAST ELECTRON DYNAMICS IN CORRELATED SYSTEMS PROBED BY TIME-RESOLVED PHOTOEMISSION SPECTROSCOPYTanusree Saha, 2023, doctoral dissertation Abstract: Complex systems in condensed matter are characterized by strong coupling
between different degrees of freedom constituting a solid. In materials
described by many-body physics, these interactions may lead to
the formation of new ground states such as excitonic insulators, Mott
insulators, and charge and spin density waves. However, the inherent
complexity in such materials poses a challenge to identifying the
dominant interactions governing these phases using equilibrium studies.
Owing to the distinct timescales associated with the elementary interactions,
such complexities can be readily addressed in the non-equilibrium
regime. Additionally, these materials might also show the emergence
of new, metastable “hidden“ phases under non-equilibrium. The thesis
investigates the ultrafast timescales of fundamental interactions in candidate
systems by employing time-and angle-resolved photoemission spectroscopy
in the femtosecond time domain. In the (supposed) excitonic
insulator model system Ta2NiSe5, the timescale of band gap closure
and the dependence of rise time (of the photoemission signal) on the
photoexcitation strength point to a predominantly electronic origin of
the band gap at the Fermi level. The charge density wave (CDW) -
Mott insulator 1T-TaS2 undergoes photoinduced phase transition to two
different phases. The initial one is a transient phase which resembles
the systems’s high temperature equilibrium phase, followed by a long-lived
“hidden“ phase with a different CDW amplitude and is primarily
driven by the CDW lattice order. For the spin density wave system
CaFe2As2 where multiple bands contribute in the formation of Fermi surfaces,
selective photoexcitation was used to disentangle the role played
by different electron orbitals. By varying the polarization of photoexcitation
pulses, it is observed that dxz/dyz orbitals primarily contribute to
the magnetic ordering while the dxy orbitals have dominant role in the
structural order. The findings of the present study provide deeper perspectives
on the underlying interactions in complex ground phases of
matter, therefore, initiating further experimental and theoretical studies
on such materials. Keywords: complex systems, charge density wave, excitonic insulator, metastable phase, Mott insulator, non-equilibrium, spin density wave, timescales, time- and angle-resolved photoemission, ultrafast dynamics Published in RUNG: 01.06.2023; Views: 2161; Downloads: 36 Full text (13,34 MB) |
6. Light-Induced Magnetization at the NanoscaleJonas Wätzel, Primož Rebernik Ribič, Marcello Coreno, Miltcho Danailov, Christian David, Alexander Demidovich, Michele Di Fraia, Luca Giannessi, Klavs Hansen, Špela Krušič, Michele Manfredda, Michael Meyer, Andrej Mihelič, Najmeh Mirian, Oksana Plekan, Barbara Ressel, Benedikt Rosner, Alberto Simoncig, Simone Spampinati, Matija Stupar, Matjaž Žitnik, Marco Zangrando, Carlo Callegari, Jamal Berakdar, Giovanni De Ninno, 2022, original scientific article Keywords: FEL, orbital angular momentum, magnetisation Published in RUNG: 16.01.2023; Views: 1505; Downloads: 0 This document has many files! More... |
7. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulsesNajmeh S. Mirian, Michele Di Fraia, Simone Spampinati, Filippo Sottocorona, Enrico Allaria, Laura Badano, Miltcho Bojanov Danailov, Alexander Demidovich, Giovanni De Ninno, Primož Rebernik Ribič, 2021, original scientific article Keywords: free electron laser, superradiance, femtosecond Published in RUNG: 03.01.2022; Views: 2164; Downloads: 0 This document has many files! More... |
8. Hot-carrier and optical-phonon ultrafast dynamics in the topological insulator Bi2Te3 upon iron deposition on its surfaceM Weis, K Balin, T Sobol, A Ciavardini, G Vaudel, V Juvè, B Arnaud, Barbara Ressel, M Stupar, K.C. Prince, Giovanni De Ninno, P Ruello, J Szade, 2021, original scientific article Abstract: This paper presents a complete study of electronic structures and photoexcited carrier dynamics in topological insulators capped with iron and iron oxide. We combine static and time-resolved angle-resolved photoemission spectroscopies (ARPES, TR-ARPES) with time-resolved optical methods (transient optical reflectivity and transmission). Both single crystal and thin films of Bi2Te3 are studied. We show that monolayers of iron and iron oxide significantly affect the electronic band structure at the interface by shifting the Fermi level into the conduction band, which we explain by a band bending effect, and is confirmed by in situ XPS measurements Keywords: time resolved spectroscopies, topological insulators, interfaces Published in RUNG: 13.12.2021; Views: 2727; Downloads: 29 Full text (2,90 MB) |
9. Orbital selective dynamics in Fe-pnictides triggered by polarized pump pulse excitationsGanesh Adhikary, Tanusree Saha, Primož Rebernik Ribič, Matija Stupar, Barbara Ressel, Jurij Urbančič, Giovanni De Ninno, A. Thamizhavel, Kalobaran Maiti, 2021, original scientific article Abstract: Quantum materials display exotic behaviours related to the interplay between temperature-driven phase transitions. Here, we study the electron dynamics in one such material, CaFe$_2$As$_2$, a parent Fe-based superconductor, employing time and angle-resolved photoemission spectroscopy. CaFe$_2$As$_2$ exhibits concomitant transition to spin density wave state and tetragonal to orthorhombic structure below 170 K. The Fermi surface of this material consists of three hole pockets ($\alpha$, $\beta$ and $\gamma$) around $\Gamma$-point and two electron pockets around $X$-point. The hole pockets have $d_{xy}$, $d_{yz}$ and $d_{zx}$ orbital symmetries. The $\beta$ band constituted by $d_{xz}$/$d_{yz}$ orbitals exhibit a gap across the magnetic phase transition. We discover that polarized pump pulses can induce excitations of electrons of a selected symmetry. More specifically, while $s$-polarized light (polarization vector perpendicular to the $xz$-plane) excites electrons corresponding to all the three hole bands, $p$-polarized light excites electrons essentially from ($\alpha$,$\beta$) bands which are responsible for magnetic order. Interestingly, within the magnetically ordered phase, the excitation due to the $p$-polarized pump pulses occur at a time scale of 50 fs, which is significantly faster than the excitation induced by $s$-polarized light ($\sim$ 200 fs). These results suggest that the relaxation of different ordered phases occurs at different time scales and this method can be used to achieve selective excitations to disentangle complexity in the study of quantum materials. Keywords: Electronic structure, Pnictides and chalcogenides, Time-resolved spectroscopy Published in RUNG: 13.10.2021; Views: 2400; Downloads: 7 Full text (9,56 MB) |
10. Dissecting Mott and charge-density wave dynamics in the photoinduced phase of 1T-TaS[sub]2Alberto Simoncig, Matija Stupar, Barbara Ressel, Tanusree Saha, Primož Rebernik Ribič, Giovanni De Ninno, 2021, original scientific article Abstract: The two-dimensional transition-metal dichalcogenide 1T−TaS2 is a complex material standing out for its puzzling low temperature phase marked by signatures amenable to both Mott-insulating and charge-density wave states. Electronic Mott states, coupled to a lattice, respond to coherent optical excitations via a modulation of the lower (valence) Hubbard band. Such dynamics is driven by strong electron-phonon coupling and typically lasts for tens of picoseconds, mimicking coherent structural distortions. Instead, the response occurring at the much faster timescale, mainly dominated by electronic many-body effects, is still a matter of intense research. By performing time- and angle-resolved photoemission spectroscopy, we investigated the photoinduced phase of 1T−TaS2 and found out that its lower Hubbard band promptly reacts to coherent optical excitations by shifting its binding energy towards a slightly larger value. This process lasts for a time comparable to the optical pump pulse length, mirroring a transient change of the onsite Coulomb repulsion energy (U). Such an observation suggests that the correction to the bare value of U, ascribed to the phonon-mediated screening which slightly opposes the Hubbard repulsion, is lost within an interval of a few tens of femtoseconds and can be understood as a fingerprint of electronic states largely decoupled from the lattice. Additionally, these results enforce the hypothesis, envisaged in the current literature, that the transient photoinduced states belong to a sort of crossover phase instead of an equilibrium metallic one. Keywords: ultrafast phenomena, time resolved photoemission, strongly correlated systems, transition metal dichalcogenide Published in RUNG: 13.04.2021; Views: 3093; Downloads: 0 This document has many files! More... |