Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme


1 - 4 / 4
First pagePrevious page1Next pageLast page
Packing patterns of silica nanoparticles on surfaces of armored polystyrene latex particles
Sara Fortuna, Catheline A. L. Colard, Stefan A. F. Bon, Alessandro Troisi, 2009, original scientific article

Abstract: Fascinating packing patterns of identical spherical and discotic objects on curved surfaces occur readily in nature and science. Examples include C60 fullerenes,(1, 2)13-atom cuboctahedral metal clusters,(3) and S-layer proteins on outer cell membranes.(4) Numerous situations with surface-arranged objects of variable size also exist, such as the lenses on insect eyes, biomineralized shells on coccolithophorids,(5) and solid-stabilized emulsion droplets(6) and bubbles.(7) The influence of size variations on these packing patterns, however, is studied sparsely. Here we investigate the packing of nanosized silica particles on the surface of polystyrene latex particles fabricated by Pickering miniemulsion polymerization of submicrometer-sized armored monomer droplets. We are able to rationalize the experimental morphology and the nearest-neighbor distribution with the help of Monte Carlo simulations. We show that broadening of the nanoparticle size distribution has pronounced effects on the self-assembled equilibrium packing structures, with original 12-point dislocations or grain-boundary scars gradually fading out.
Found in: osebi
Keywords: packing patterns, silica, simulation, Monte Carlo, order, disorder, transition, armored particles, nanoparticles, Pickering emulsion
Published: 10.10.2016; Views: 2690; Downloads: 0
.pdf Fulltext (3,85 MB)

An artificial intelligence approach for modeling molecular self-assembly: Agent Based simulations of rigid molecules
Sara Fortuna, Alessandro Troisi, 2009, original scientific article

Abstract: Agent-based simulations are rule-based models traditionally used for the simulations of complex systems. In this paper, an algorithm based on the concept of agent-based simulations is developed to predict the lowest energy packing of a set of identical rigid molecules. The agents are identified with rigid portions of the system under investigation, and they evolve following a set of rules designed to drive the system toward the lowest energy minimum. The algorithm is compared with a conventional Metropolis Monte Carlo algorithm, and it is applied on a large set of representative models of molecules. For all the systems studied, the agent-based method consistently finds a significantly lower energy minima than the Monte Carlo algorithm because the system evolution includes elements of adaptation (new configurations induce new types of moves) and learning (past successful choices are repeated).
Found in: osebi
Keywords: Self-assembly, self-organisation, agent based, Monte Carlo, rigid molecules, simulation
Published: 10.10.2016; Views: 2584; Downloads: 0
.pdf Fulltext (2,25 MB)

Hexagonal lattice model of the patterns formed by hydrogen-bonded molecules on the surface
Sara Fortuna, David L. Cheung, Alessandro Troisi, 2010, original scientific article

Abstract: We model the two-dimensional self-assembly of planar molecules capable of complementary interactions (like hydrogen bonding) as a set of hexagonal tiles on a hexagonal lattice. We use Monte Carlo simulations to study the phase diagrams of three model systems. The phases are characterized using a variety of order parameters, and they are studied as a function of the strength of the complementary interaction energy. This simplified model is proven to be capable of reproducing the phases encountered in real systems, unifying within the same framework most of the structures encountered experimentally.
Found in: osebi
Keywords: self-assembly, self-organisation, Monte Carlo, simulation, lattice model, dicarboxilic acid, hexagonal lattice
Published: 10.10.2016; Views: 2597; Downloads: 0
.pdf Fulltext (3,44 MB)

Agent based modelling for the 2D molecular self-organization of realistic molecules
Sara Fortuna, Alessandro Troisi, 2010, original scientific article

Abstract: We extend our previously developed agent-based (AB) algorithm to the study of the self-assembly of a fully atomistic model of experimental interest. We study the 2D self-assembly of a rigid organic molecule (1,4-benzene-dicarboxylic acid or TPA), comparing the AB results with Monte Carlo (MC) and MC simulated annealing, a technique traditionally used to solve the global minimization problem. The AB algorithm gives a lower energy configuration in the same simulation time than both of the MC simulation techniques. We also show how the AB algorithm can be used as a part of the protocol to calculate the phase diagram with less computational effort than standard techniques.
Found in: osebi
Keywords: self-assembly, self-organisation, 1, 4-benzene-dicarboxylic acid, TPA, agent based, Monte Carlo, simulation, phase diagram
Published: 11.10.2016; Views: 2790; Downloads: 0
.pdf Fulltext (4,00 MB)

Search done in 0 sec.
Back to top