Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


11 - 13 / 13
First pagePrevious page12Next pageLast page
Polymer Nanoparticle Sizes from Dynamic Light Scattering and Size Exclusion Chromatography: The Case Study of Polysilanes.
Artem Badasyan, Andraž Mavrič, Irena Kralj Cigić, Tim Bencik, Matjaž Valant, 2018, original scientific article

Abstract: Dynamic Light Scattering (DLS) and Size Exclusion Chromatography (SEC) are among the most popular methods for determining polymer sizes in solution. Taking dendritic and network polysilanes as a group of least soluble polymer substances, we critically compare and discuss the difference between nanoparticle sizes, obtained by DLS and SEC. Polymer nanoparticles are typically in poor solution conditions below the theta point and are in globular conformation therefore. Determination of particle sizes in presence of attractive interactions is not a trivial task. The only possibility to measure aggregation-free, a true molecular size of polymer nanoparticles in such regime of solution, is to operate with the dilute solution of globules (below theta point and above the miscibility line). Basing on results of our polysilane measurements, we come to a conclusion that DLS provides more reliable results than SEC for the dilute solution of globules. General implications for the size measurements of polymer nanoparticles in solutions are discussed.
Keywords: Polymer Nanoparticle, Dynamic Light Scattering, Size Exclusion Chromatography, Polysilanes
Published in RUNG: 16.05.2018; Views: 4608; Downloads: 16
.pdf Full text (3,17 MB)

Polymer Vesicles with a Colloidal Armor of Nanoparticles
Rong Chen, Daniel J. G. Pearce, Sara Fortuna, David L. Cheung, Stefan A. F. Bon, 2011, original scientific article

Abstract: The fabrication of polymer vesicles with a colloidal armor made from a variety of nanoparticles is demonstrated. In addition, it is shown that the armored supracolloidal structure can be postmodified through film-formation of soft polymer latex particles on the surface of the polymersome, hereby effectively wrapping the polymersome in a plastic bag, as well as through formation of a hydrogel by disintegrating an assembled polymer latex made from poly(ethyl acrylate-co-methacrylic acid) upon increasing the pH. Furthermore, ordering and packing patterns are briefly addressed with the aid of Monte Carlo simulations, including patterns observed when polymersomes are exposed to a binary mixture of colloids of different size.
Keywords: Pickering emultion, self-assemblt, Monte Carlo, simulation, nanoparticle, packing, pattern garnd canonical, colloids
Published in RUNG: 11.10.2016; Views: 5051; Downloads: 0
This document has many files! More...

Atomically resolved dealloying of structurally ordered Pt nanoalloy as an oxygen reduction reaction electrocatalyst
Andraž Pavlišič, Primož Jovanovič, Vid Simon Šelih, Martin Šala, Marjan Bele, Goran Dražić, Iztok Arčon, Samo B. Hočevar, Anton Kokalj, Nejc Hodnik, Miran Gaberšček, original scientific article

Abstract: The positive effect of intermetallic ordering of platinum alloy nanoparticles on oxygen reduction reaction (ORR) activity has been well established. What is still missing is an understanding of selective leaching of the less noble metal from the ordered structure and its correlation to longterm ORR performance. Using a combination of kinetic Monte Carlo simulations and advanced characterization techniques, we provide unprecedented insight into dealloying of intermetallic PtCu3 nanoparticles a well-known binary alloy. Comparison of ordered and disordered samples with identical initial compositions and particle size distributions reveals an unexpected correlation: whereas the copper dealloying rates in the ordered and disordered counterparts are almost the same, in the ordered structure Pt atoms are surrounded by 15−30% more Cu atoms throughout all the stages of acid leaching. This more convenient Pt−Cu coordination explains the statistically significant increase of 23−37% in ORR activity of the ordered structure at all stages of alloy degradation.
Keywords: ORR activity, fuel cells, platinum alloy, nanoparticle stability, intermetallic ordering, kinetic Monte Carlo, dealloying, in situ ICP-MS
Published in RUNG: 27.09.2016; Views: 5954; Downloads: 0
This document has many files! More...

Search done in 0.02 sec.
Back to top