Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Anisotropy studies of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory
Josina Schulte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: Measurements of anisotropic arrival directions of ultra-high-energy cosmic rays provide important information for identifying their sources. On large scales, cosmic rays with energies above 8 EeV reveal a dipolar flux modulation in right ascension with a significance of 6.9 deg., with the dipole direction pointing 113◦ away from the Galactic center. This observation is explained by extragalactic origins. Also, model-independent searches for small- and intermediate-scale overdensities have been performed in order to unveil astrophysically interesting regions. On these scales, no statistically significant features could be detected. However, intermediate-scale analyses comparing the measured arrival directions with potential source catalogs show indications for a coincidence of the measured arrival directions with catalogs of starburst galaxies and the Centaurus A region. In this contribution, an overview of the studies regarding anisotropies of the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory on different angular scales is presented and the current results are discussed.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, UHECR anisotropy studies, UHECR sources
Published in RUNG: 24.01.2024; Views: 1096; Downloads: 5
.pdf Full text (5,01 MB)
This document has many files! More...

2.
Investigation of multi-messenger properties of FR0 radio galaxy emitted ultra-high energy cosmic rays
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Albert Reimer, Paolo Da Vela, F. Tavecchio, G. Bonnoli, C. Righi, 2023, published scientific conference contribution

Abstract: Low luminosity Fanaroff-Riley type 0 (FR0) radio galaxies are amongst potential contributors to the observed flux of ultra-high energy cosmic rays (UHECRs). Due to FR0s’ much higher abundance in the local universe than more powerful radio galaxies (e.g., about five times more ubiquitous at redshifts z≤0.05 than FR1s), they could provide a substantial fraction of the total UHECR energy density. In the presented work, we determine the mass composition and energy spectrum of UHECRs emitted by FR0 sources by fitting simulation results from the CRPropa3 framework to the recently published Pierre Auger Observatory data. The resulting emission spectral characteristics (spectral indices, rigidity cutoffs) and elemental group fractions are compared to the Auger results. The FR0 simulations include the approximately isotropic distribution of FR0s extrapolated from the measured FR0 galaxy properties and various extragalactic magnetic field configurations, including random and large-scale structured fields. We predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. The presented results allow for probing the properties of the FR0 radio galaxies as cosmic-ray sources using observational high-energy multi-messenger data.
Keywords: ultra-high energy cosmic rays, UHECRs, Pierre Auger Observatory, UHECR propagation, UHECR interactions, UHECR energy spectrum, UHECR mass composition, UHECR sources, Fanaroff-Riley (FR) radio galaxies, FR0 galaxies
Published in RUNG: 24.01.2024; Views: 818; Downloads: 39
.pdf Full text (573,28 KB)
This document has many files! More...

3.
Search done in 0.02 sec.
Back to top