Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


81 - 85 / 85
First pagePrevious page123456789Next pageLast page
81.
82.
Extrapolating FR-0 radio galaxy source properties from propagation of multi-messenger ultra-high energy cosmic rays
Chiara Righi, Giacomo Bonnoli, Fabrizio Tavecchio, Paolo Da Vela, Anita Reimer, Margot Boughelilba, Serguei Vorobiov, Lukas Merten, Jon Paul Lundquist, 2021, published scientific conference contribution

Abstract: Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10[sup]18 eV). FR-0s can potentially provide a significant fraction of the UHECR energy density as they are much more numerous in the local universe than more energetic radio galaxies such as FR-1s or FR-2s (up to a factor of ∼5 with z≤0.05 compared to FR-1s). In the present work, UHECR mass composition and energy spectra at the FR-0 sources are estimated by fitting simulation results to the published Pierre Auger Observatory data. This fitting is done using a simulated isotropic sky distribution extrapolated from the measured FR-0 galaxy properties and propagating CRs in plausible extragalactic magnetic field configurations using the CRPropa3 framework. In addition, we present estimates of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon backgrounds during CR propagation. With this approach, we aim to investigate the properties of the sources with the help of observational multi-messenger data.
Found in: ključnih besedah
Keywords: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, extragalactic magnetic fields, UHECR propagation, UHECR interactions, cosmogenic photons, cosmogenic neutrinos
Published: 16.08.2021; Views: 592; Downloads: 0
.pdf Fulltext (2,04 MB)

83.
FR-0 jetted active galaxies
Chiara Righi, Jon Paul Lundquist, Giacomo Bonnoli, Fabrizio Tavecchio, Serguei Vorobiov, Paolo Da Vela, Anita Reimer, Margot Boughelilba, Lukas Merten, 2021, published scientific conference contribution

Abstract: Fanaroff-Riley (FR) 0 radio galaxies form a low-luminosity extension to the well-established ultra-high-energy cosmic-ray (UHECR) candidate accelerators FR-1 and FR-2 galaxies. Their much higher number density — up to a factor five times more numerous than FR-1 with z ≤ 0.05 — makes them good candidate sources for an isotropic contribution to the observed UHECR flux. Here, the acceleration and survival of UHECR in prevailing conditions of the FR-0 environment are discussed. First, an average spectral energy distribution (SED) is compiled based on the FR0CAT. These photon fields, composed of a jet and a host galaxy component, form a minimal target photon field for the UHECR, which will suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. The two most promising acceleration scenarios based on Fermi-I order and gradual shear acceleration are discussed as well as different escape scenarios. When an efficient acceleration mechanism precedes gradual shear acceleration, e.g., Fermi-I orothers, FR-0 galaxies are likely UHECR accelerators. Gradual shear acceleration requires a jet Lorentz factor of Gamma>1.6, to be faster than the corresponding escape. In less optimistic models, a contribution to the cosmic-ray flux between the knee and ankle is expected to be relatively independent of the realized turbulence and acceleration.
Found in: ključnih besedah
Summary of found: ...form a low-luminosity extension to the well-established ultra-high-energy cosmic-ray (UHECR) candidate accelerators FR-1 and FR-2...
Keywords: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, cosmic ray acceleration, cosmic ray energy losses
Published: 16.08.2021; Views: 545; Downloads: 0
.pdf Fulltext (1,13 MB)

84.
Application of machine learning techniques for cosmic ray event classification and implementation of a real-time ultra-high energy photon search with the surface detector of the Pierre Auger Observatory
Lukas Zehrer, 2021, doctoral dissertation

Abstract: Despite their discovery already more than a century ago, Cosmic Rays (CRs) still did not divulge all their properties yet. Theories about the origin of ultra-high energy (UHE, > 10^18 eV) CRs predict accompanying primary photons. The existence of UHE photons can be investigated with the world’s largest ground-based experiment for detection of CR-induced extensive air showers (EAS), the Pierre Auger Observatory, which offers an unprecedented exposure to rare UHE cosmic particles. The discovery of photons in the UHE regime would open a new observational window to the Universe, improve our understanding of the origin of CRs, and potentially uncloak new physics beyond the standard model. The novelty of the presented work is the development of a "real-time" photon candidate event stream to a global network of observatories, the Astrophysical Multimessenger Observatory Network (AMON). The stream classifies CR events observed by the Auger surface detector (SD) array as regards their probability to be photon nominees, by feeding to advanced machine learning (ML) methods observational air shower parameters of individual CR events combined in a multivariate analysis (MVA). The described straightforward classification procedure further increases the Pierre Auger Observatory’s endeavour to contribute to the global effort of multi-messenger (MM) studies of the highest energy astrophysical phenomena, by supplying AMON partner observatories the possibility to follow-up detected UHE events, live or in their archival data.
Found in: ključnih besedah
Keywords: astroparticle physics, ultra-high energy cosmic rays, ultra-high energy photons, extensive air showers, Pierre Auger Observatory, multi-messenger, AMON, machine learning, multivariate analysis, dissertations
Published: 27.10.2021; Views: 758; Downloads: 28
URL Fulltext (0,00 KB)
This document has many files! More...

85.
Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory
Marko Zavrtanik, Danilo Zavrtanik, Serguei Vorobiov, Samo Stanič, Jon Paul Lundquist, Andrej Filipčič, P. Abreu, Lukas Zehrer, 2022, original scientific article

Found in: ključnih besedah
Summary of found: ...cosmic ray experiments, ultra high energy, cosmic rays, physics of the early universe,...
Keywords: cosmic ray experiments, ultra high energy, cosmic rays, physics of the early universe, Pierre Auger Observatory, Lorentz invariance violation effects
Published: 18.01.2022; Views: 356; Downloads: 9
URL Fulltext (0,00 KB)
This document has many files! More...

Search done in 0 sec.
Back to top