Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 18
First pagePrevious page12Next pageLast page
1.
Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article

Abstract: The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation. We find that a model containing a flux contribution from the starburst galaxy catalog of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of 10EV provides a fair simultaneous description of all three observables. The starburst galaxy model is favored with a significance of 4.5σ (considering experimental systematic effects) compared to a reference model with only homogeneously distributed background sources. By investigating a scenario with Centaurus A as a single source in combination with the homogeneous background, we confirm that this region of the sky provides the dominant contribution to the observed anisotropy signal. Models containing a catalog of jetted active galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they cannot adequately describe the measured arrival directions.
Keywords: ultra high energy cosmic rays, cosmic ray experiments, Pierre Auger Observatory, active galactic nuclei
Published in RUNG: 19.01.2024; Views: 768; Downloads: 39
.pdf Full text (3,93 MB)
This document has many files! More...

2.
Active Galactic Nuclei population studies with the Cherenkov Telescope Array
Anthony M. Brown, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) observatory is the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Building on the strengths of current IACTs, CTA is designed to achieve an order of magnitude improvement in sensitivity, with unprecedented angular and energy resolution. CTA will also increase the energy reach of IACTs, observing photons in the energy range from 20 GeV to beyond 100 TeV. These advances in performance will see CTA heralding in a new era for high-energy astrophysics, with the emphasis shifting from source discovery, to population studies and precision measurements. In this talk we discuss CTA’s ability to conduct source population studies of �-ray bright active galactic nuclei and how this ability will enhance our understanding on the redshift evolution of this dominant �-ray source class.
Keywords: Cherenkov Telescope Array, high-energy astrophysics, active galactic nuclei
Published in RUNG: 19.09.2023; Views: 951; Downloads: 6
.pdf Full text (1,05 MB)
This document has many files! More...

3.
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
Eli Kasai, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, published scientific conference contribution

Abstract: n the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory.
Keywords: Cherenkov Telescope Array, very-high-energy gamma-ray astronomy, Active Galactic Nuclei, high-frequency peaked BL Lacs, Southern African Large Telescope
Published in RUNG: 18.09.2023; Views: 1117; Downloads: 6
.pdf Full text (972,63 KB)
This document has many files! More...

4.
Bright blazar flares with CTA
M. Cerruti, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: The TeV extragalactic sky is dominated by blazars, radio-loud active galactic nuclei with a relativistic jet pointing towards the Earth. Blazars show variability that can be quite exceptional both in terms of flux (orders of magnitude of brightening) and time (down to the minute timescale). This bright flaring activity contains key information on the physics of particle acceleration and photon production in the emitting region, as well as the structure and physical properties of the jet itself. The TeV band is accessed from the ground by Cherenkov telescopes that image the pair cascade triggered by the interaction of the gamma ray with the Earth’s atmosphere. The Cherenkov Telescope Array (CTA) represents the upcoming generation of imaging atmospheric Cherenkov telescopes, with a significantly higher sensitivity and larger energy coverage with respect to current instruments. It will thus provide us with unprecedented statistics on blazar light-curves and spectra. In this contribution we present the results from realistic simulations of CTA observations of bright blazar flares, taking as input state-of-the-art numerical simulations of blazar emission models and including all relevant observational constraints.
Keywords: active galactic nuclei, radio-loud AGN, blazars
Published in RUNG: 15.09.2023; Views: 1006; Downloads: 5
.pdf Full text (1,82 MB)
This document has many files! More...

5.
The UHECR-FR0 radio galaxy connection : a multi-messenger study of energy spectra/composition emission and intergalactic magnetic field propagation
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2023, published scientific conference contribution

Abstract: This study investigates low luminosity Fanaroff-Riley Type 0 (FR0) radio galaxies as a potentially significant source of ultra-high energy cosmic rays (UHECRs). Due to their much higher prevalence in the local universe compared to more powerful radio galaxies (about five times more than FR-1s), FR0s may provide a substantial fraction of the total UHECR energy density. To determine the nucleon composition and energy spectrum of UHECRs emitted by FR0 sources, simulation results from CRPropa3 are fit to Pierre Auger Observatory data. The resulting emission spectral indices, rigidity cutoffs, and nucleon fractions are compared to recent Auger results. The FR0 simulations include the approximately isotropic distribution of FR0 galaxies and various intergalactic magnetic field configurations (including random and structured fields) and predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. This comprehensive simulation allows for investigating the properties of the FR0 sources using observational multi-messenger data.
Keywords: ultra-high energy cosmic rays, UHECR propagation, CRPropa, active galactic nuclei, jetted AGN, FR0 radio galaxies, Pierre Auger Observatory, UHECR energy spectrum
Published in RUNG: 24.08.2023; Views: 1116; Downloads: 4
.pdf Full text (1,12 MB)
This document has many files! More...

6.
Spine-sheath jet model for low-luminosity AGNs
Margot Boughelilba, Anita Reimer, Lukas Merten, Jon Paul Lundquist, 2023, published scientific conference contribution

Abstract: In several jetted AGNs, structured jets have been observed. In particular spine-sheath configurations where the jet is radially divided into two or more zones of different flow velocities. We present a model based on the particle and radiation transport code CR-ENTREES. Here, interaction rates and secondary particle and photon yields are pre-calculated by Monte Carlo event generators or semi-analytical approximations. These are then used to create transition matrices, that describe how each particle spectrum evolves with time. This code allows for arbitrary injection of primary particles, and the possibility to choose which interaction to include (photo-meson production, Bethe-Heitler pair-production, inverse-Compton scattering, �-� pair production, decay of all unstable particles, synchrotron radiation — from electrons, protons, and all relevant secondaries before their respective decays — and particle escape). In addition to the particle and radiation interactions taking place in each homogeneous zone, we implement the feedback between the two zones having different bulk velocities. The main mechanism at play when particles cross the boundary between the two zones is shear acceleration. We follow a microscopic description of this acceleration process to create a corresponding transition matrix and include it in our numerical setup. Furthermore, each zone’s radiation field can be used as an external target photon field for the other zone’s particle interactions. We present here the first results of the effect of a two-zone spine-sheath jet, by applying this model to typical low-luminosity AGNs.
Keywords: active galactic nuclei, low-luminosity jetted AGN, spine-sheath jet structure
Published in RUNG: 24.08.2023; Views: 973; Downloads: 4
.pdf Full text (461,21 KB)
This document has many files! More...

7.
The rise and fall of the nuclear transient PS16dtm
Tanja Petrushevska, 2023, published scientific conference contribution abstract (invited lecture)

Abstract: Thanks to the advent of large-scale optical surveys, a diverse set of flares from the nuclear regions of galaxies has recently been discovered. These include the disruption of stars by supermassive black holes at the centres of galaxies - nuclear transients known as tidal disruption events (TDEs). Active galactic nuclei (AGN) can show extreme changes in the brightness and emission line intensities, often referred to as changing-look AGN (CLAGN). Given the physical and observational similarities, the interpretation and distinction of nuclear transients as CLAGN or TDEs remains difficult. One of the obstacles of making progress in the field is the lack of well-sampled data of long-lived nuclear outbursts in AGN. I will present PS16dtm, a nuclear transient in a Narrow Line Seyfert 1 (NLSy1) galaxy which has been proposed to be a TDE candidate. I will show our multi-year spectroscopic and photometric study of PS16dtm, which can help us to better understand the outbursts originating in NLSy1 galaxies.
Keywords: active galactic nuclei, tidal disruption events
Published in RUNG: 10.08.2023; Views: 1127; Downloads: 3
URL Link to file
This document has many files! More...

8.
The rise and fall of the iron-strong nuclear transient PS16dtm
Tanja Petrushevska, Giorgos Leloudas, D. Ilić, Mateusz Bronikowski, P. Charalampopoulos, G. K. Jaisawal, E. Paraskeva, M. Pursiainen, Andreja Gomboc, Barbara Marčun, 2023, original scientific article

Abstract: Context. Thanks to the advent of large-scale optical surveys, a diverse set of flares from the nuclear regions of galaxies has recently been discovered. These include the disruption of stars by supermassive black holes at the centers of galaxies – nuclear transients known as tidal disruption events (TDEs). Active galactic nuclei (AGN) can show extreme changes in the brightness and emission line intensities, often referred to as changing-look AGN (CLAGN). Given the physical and observational similarities, the interpretation and distinction of nuclear transients as CLAGN or TDEs remains difficult. One of the obstacles of making progress in the field is the lack of well-sampled data of long-lived nuclear outbursts in AGN. Aims. Here, we study PS16dtm, a nuclear transient in a Narrow Line Seyfert 1 (NLSy1) galaxy, which has been proposed to be a TDE candidate. Our aim is to study the spectroscopic and photometric properties of PS16dtm, in order to better understand the outbursts originating in NLSy1 galaxies. Methods. Our extensive multiwavelength follow-up that spans around 2000 days includes photometry and spectroscopy in the UV/optical, as well as mid-infrared (MIR) and X-ray observations. Furthermore, we improved an existing semiempirical model in order to reproduce the spectra and study the evolution of the spectral lines. Results. The UV/optical light curve shows a double peak at ∼50 and ∼100 days after the first detection, and it declines and flattens afterward, reaching preoutburst levels after 2000 days of monitoring. The MIR light curve rises almost simultaneously with the optical, but unlike the UV/optical which is approaching the preoutburst levels in the last epochs of our observations, the MIR emission is still rising at the time of writing. The optical spectra show broad Balmer features and the strongest broad Fe II emission ever detected in a nuclear transient. This broad Fe II emission was not present in the archival preoutburst spectrum and almost completely disappeared +1868 days after the outburst. We found that the majority of the flux of the broad Balmer and Fe II lines is produced by photoionization. We detect only weak X-ray emission in the 0.5−8 keV band at the location of PS16dtm, at +848, +1130, and +1429 days past the outburst. This means that the X-ray emission continues to be lower by at least an order of magnitude, compared to archival, preoutburst measurements. Conclusions. We confirm that the observed properties of PS16dtm are difficult to reconcile with normal AGN variability. The TDE scenario continues to be a plausible explanation for the observed properties, even though PS16dtm shows differences compared to TDE in quiescent galaxies. We suggest that this event is part of a growing sample of TDEs that show broad Balmer line profiles and Fe II complexes. We argue that the extreme variability seen in the AGN host due to PS16dtm may have easily been misclassified as a CLAGN, especially if the rising part of the light curve had been missed. This implies that some changing look episodes in AGN may be triggered by TDEs. Imaging and spectroscopic data of AGN with good sampling are needed to enable testing of possible physical mechanisms behind the extreme variability in AGN.
Keywords: nuclear transients, supermassive black holes, tidal disruption events, active galactic nuclei
Published in RUNG: 24.01.2023; Views: 1707; Downloads: 22
.pdf Full text (2,75 MB)
This document has many files! More...

9.
The rise and fall of the nuclear transient PS16dtm
Tanja Petrushevska, 2022, published scientific conference contribution abstract

Abstract: Thanks to the advent of large-scale optical surveys, a diverse set of flares from the nuclear regions of galaxies has recently been discovered. These include the disruption of stars by supermassive black holes at the centres of galaxies - nuclear transients known as tidal disruption events (TDEs). Active galactic nuclei (AGN) can show extreme changes in the brightness and emission line intensities, often referred to as changing-look AGN (CLAGN).  Given the physical and observational similarities, the interpretation and distinction of nuclear transients as CLAGN or TDEs remains difficult. One of the obstacles of making progress in the field is the lack of well-sampled data of long-lived nuclear outbursts in AGN. I will present PS16dtm, a nuclear transient in a Narrow Line Seyfert 1 (NLSy1) galaxy which has been proposed to be a TDE candidate. I will show our multi-year spectroscopic and photometric study of PS16dtm, which can help us to better understand the outbursts originating in NLSy1 galaxies.
Keywords: supermassive black holes, active galactic nuclei, tidal disruption events
Published in RUNG: 09.11.2022; Views: 1393; Downloads: 6
URL Link to full text
This document has many files! More...

10.
The rise and fall of the iron-strong nuclear transient PS16dtm
Tanja Petrushevska, 2022, published scientific conference contribution abstract

Abstract: Thanks to the advent of large-scale optical surveys, a diverse set of flares from the nuclear regions of galaxies has recently been discovered. These include the disruption of stars by supermassive black holes at the centres of galaxies - nuclear transients known as tidal disruption events (TDEs). Active galactic nuclei (AGN) can show extreme changes in the brightness and emission line intensities, often referred to as changing-look AGN (CLAGN).  Given the physical and observational similarities, the interpretation and distinction of nuclear transients as CLAGN or TDEs remains difficult. One of the obstacles of making progress in the field is the lack of well-sampled data of long-lived nuclear outbursts in AGN. I will present PS16dtm, a nuclear transient in a Narrow Line Seyfert 1 (NLSy1) galaxy which has been proposed to be a TDE candidate. I will show our multi-year spectroscopic and photometric study of PS16dtm, which can help us to better understand the outbursts originating in NLSy1 galaxies.
Keywords: supermassive black holes, active galactic nuclei, transients
Published in RUNG: 09.11.2022; Views: 1375; Downloads: 9
URL Link to full text
This document has many files! More...

Search done in 0.05 sec.
Back to top