Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 41
First pagePrevious page12345Next pageLast page
1.
Optical properties of near-surface urban aerosols and their chemical tracing in a Mediterranean city (Athens)
Dimitris Katsanos, Aikaterini Bougiatioti, Eleni Liakakou, Dimitris G. Kaskaoutis, Iasonas Stavroulas, D. Paraskevopoulou, Maria Lianou, Basil E. Psiloglou, Evangelos Gerasopoulos, Christodoulos Pilinis, 2019, original scientific article

Abstract: One-year measurements (October 2016–September 2017) of aerosol optical properties in the Athens urban environment were analyzed; for closure purposes, the results were supported by data of chemical composition of the non-refractory submicron aerosol fraction acquired with an Aerosol Chemical Speciation Monitor (ACSM). Both the spectral scattering (bsca) and absorption (babs) coefficients exhibit a pronounced annual variability with higher values (63.6 Mm–1 at 550 nm and 41.0 Mm–1 at 520 nm, respectively) in winter, due to domestic heating releasing increased carbonaceous emissions and the shallow mixing layer trapping aerosols near the surface. Much lower values (33.5 Mm–1 and 22.9 Mm–1 for bsca and babs, respectively) are found during summer, indicating rather aged aerosols from regional sources. The estimations of the dry spectral single scattering albedo (SSA), scattering (SAE) and absorption (AAE) Ångström exponents focus on the seasonality of the urban aerosols. The high SAE (~2.0) and low SSA (0.62 ± 0.11) values throughout the year indicate the dominance of fine-absorbing aerosols from fossil-fuel combustion, while the high AAE (~1.5) in winter suggests enhanced presence of biomass-burning aerosols. Pronounced morning and late evening/night peaks are found in both bsca and babs during winter, coinciding with the morning traffic rush hour and increased residential wood burning in the evening, while in the other seasons, the diurnal patterns flatten out. The wind speed strongly affects the aerosol loading and properties in winter, since for winds below 3 m s–1, a high increase in bsca and babs is observed, consistent with low dilution processes and hazy/smoggy conditions. Our closure experiments indicate a good agreement (R2 = 0.91, slope = 1.08) between the reconstructed and measured bsca values and reveal that organic matter contributes about half of the sub-micron mass in winter, followed by sulfate (~40%) and nitrate (10%, only in winter) aerosols.
Keywords: urban aerosols, light scattering, absorption, chemical species, wood burning, Athens
Published in RUNG: 10.05.2024; Views: 199; Downloads: 2
.pdf Full text (1,36 MB)
This document has many files! More...

2.
Absorption enhancement of black carbon particles in a Mediterranean city and countryside : effect of particulate matter chemistry, ageing and trend analysis
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, Maria Cruz Minguillon, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, 2022, original scientific article

Abstract: Abstract. Black carbon (BC) is recognized as the most important warming agent among atmospheric aerosol particles. The absorption efficiency of pure BC is rather well-known, nevertheless the mixing of BC with other aerosol particles can enhance the BC light absorption efficiency, thus directly affecting Earth's radiative balance. The effects on climate of the BC absorption enhancement due to the mixing with these aerosols are not yet well constrained because these effects depend on the availability of material for mixing with BC, thus creating regional variations. Here we present the mass absorption cross-section (MAC) and absorption enhancement of BC particles (Eabs), at different wavelengths (from 370 to 880 nm for online measurements and at 637 nm for offline measurements) measured at two sites in the western Mediterranean, namely Barcelona (BCN; urban background) and Montseny (MSY; regional background). The Eabs values ranged between 1.24 and 1.51 at the urban station, depending on the season and wavelength used as well as on the pure BC MAC used as a reference. The largest contribution to Eabs was due to the internal mixing of BC particles with other aerosol compounds, on average between a 91 % and a 100 % at 370 and 880 nm, respectively. Additionally, 14.5 % and 4.6 % of the total enhancement at the short ultraviolet (UV) wavelength (370 nm) was due to externally mixed brown carbon (BrC) particles during the cold and the warm period, respectively. On average, at the MSY station, a higher Eabs value was observed (1.83 at 637 nm) compared to BCN (1.37 at 637 nm), which was associated with the higher fraction of organic aerosols (OA) available for BC coating at the regional station, as denoted by the higher organic carbon to elemental carbon (OC:EC) ratio observed at MSY compared to BCN. At both BCN and MSY, Eabs showed an exponential increase with the amount of non-refractory (NR) material available for coating (RNR-PM). The Eabs at 637 nm at the MSY regional station reached values up to 3 during episodes with high RNR-PM, whereas in BCN, Eabs kept values lower than 2 due to the lower relative amount of coating materials measured at BCN compared to MSY. The main sources of OA influencing Eabs throughout the year were hydrocarbon OA (HOA) and cooking-related OA (COA), i.e. primary OA (POA) from traffic and cooking emissions, respectively, at both 370 and 880 nm. At the short UV wavelength (370 nm), a strong contribution to Eabs from biomass burning OA (BBOA) and less oxidized oxygenated OA (LO-OOA) sources was observed in the colder period. Moreover, we found an increase of Eabs with the ageing state of the particles, especially during the colder period. This increase of Eabs with particle ageing was associated with a larger relative amount of secondary OA (SOA) compared to POA. The availability of a long dataset at both stations from offline measurements enabled a decade-long trend analysis of Eabs at 637 nm, that showed statistically significant (s.s.) positive trends of Eabs during the warmer months at the MSY station. This s.s. positive trend in MSY mirrored the observed increase of the OC:EC ratio over time. Moreover, in BCN during the COVID-19 lockdown period in spring 2020 we observed a sharp increase of Eabs due to the observed sharp increase of the OC:EC ratio. Our results show similar values of Eabs to those found in the literature for similar background stations.
Keywords: black carbomn, coating, organic aerosol, light absorption
Published in RUNG: 10.05.2024; Views: 167; Downloads: 2
.pdf Full text (2,74 MB)
This document has many files! More...

3.
Anthropic settlementsʹ impact on the light-absorbing aerosol concentrations and heating rate in the arctic
Niccolò Losi, Piotr Markuszewski, Martin Rigler, Asta Gregorič, Griša Močnik, Violetta Drozdowska, Przemek Makuch, Tymon Zielinski, Paulina Pakszys, Małgorzata Kitowska, 2023, original scientific article

Abstract: Light-absorbing aerosols (LAA) impact the atmosphere by heating it. Their effect in the Arctic was investigated during two summer Arctic oceanographic campaigns (2018 and 2019) around the Svalbard Archipelago in order to unravel the differences between the Arctic background and the local anthropic settlements. Therefore, the LAA heating rate (HR) was experimentally determined. Both the chemical composition and high-resolution measurements highlighted substantial differences between the Arctic Ocean background (average eBC concentration of 11.7 ± 0.1 ng/m3) and the human settlements, among which the most impacting appeared to be Tromsø and Isfjorden (mean eBC of 99.4 ± 3.1 ng/m3). Consequently, the HR in Isfjorden (8.2 × 10−3 ± 0.3 × 10−3 K/day) was one order of magnitude higher than in the pristine background conditions (0.8 × 10−3 ± 0.9 × 10−5 K/day). Therefore, we conclude that the direct climate impact of local LAA sources on the Arctic atmosphere is not negligible and may rise in the future due to ice retreat and enhanced marine traffic.
Keywords: light-absorbing aerosols, black carbon, climate change, heating rate
Published in RUNG: 21.12.2023; Views: 786; Downloads: 5
.pdf Full text (3,57 MB)
This document has many files! More...

4.
Highlights from the Telescope Array Experiment
J. Kim, Jon Paul Lundquist, 2023, published scientific conference contribution (invited lecture)

Abstract: The Telescope Array (TA) is the largest ultra-high energy cosmic ray (UHECR) observatory in the Northern Hemisphere. Together with the TA Low Energy Extension (TALE), TA×4, and TALE infill detector, the TA measures the properties of UHECR-induced extensive air showers (EAS) in the energy region from 10^15 eV to over 10^20 eV. Each of these uses a hybrid system with an array of scintillators to sample the footprint of the EAS at the Earth’s surface along with telescopes that measure the fluorescence and Cherenkov light from the EAS. The statistics at the highest energies are being enhanced with the TA×4 detector, half completed but still under construction, which will quadruple the surface detector area with telescopes. The TALE infill surface detectors were recently deployed to further lower the hybrid energy threshold of TALE. We present the status of the experiment and recent results on the energy spectrum, mass composition, and anisotropy, including new features in the energy spectrum at about 10^19.2 eV and in the UHECR arrival direction anisotropy.
Keywords: Telescope Array, TALE, low energy extension, TAx4, indirect detection, hybrid detection, ground array, surface detection, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, energy spectrum, composition, anisotropy
Published in RUNG: 10.10.2023; Views: 752; Downloads: 6
.pdf Full text (26,81 MB)
This document has many files! More...

5.
Cosmic ray mass composition measurement with the TALE hybrid detector
K. Fujita, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: We report on the cosmic ray mass composition measured by the Telescope Array Low-energy Extension (TALE) hybrid detector. The TALE detector consists of a Fluorescence Detector (FD) station with 10 FD telescopes located at the TA Middle Drum FD Station (itself made up of 14 FD telescopes), and a Surface Detector (SD) array of scintillation counters. The SD array consists of 40 counters with 400 m spacing and 40 counters with 600 m spacing. The FD station, with a total of 24 telescopes, overlooks the SD array and provides sky coverage with an elevation angle range of 3∘ to 59∘. In this contribution, we will present the latest result of the cosmic ray mass composition measurement in the energy range from 10^16.5 eV to 10^18.5 eV using almost 5 years of TALE hybrid data.
Keywords: Telescope Array, TALE, low energy extension, indirect detection, hybrid detection, ground array, infill array, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, composition
Published in RUNG: 09.10.2023; Views: 740; Downloads: 6
.pdf Full text (1,94 MB)
This document has many files! More...

6.
Telescope Array Cloud Ranging Test
T. Okuda, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The Telescope Array (TA) experiment detects air-showers induced by ultra high energy cosmic rays. The TA atmospheric Fluorescence telescopic Detector(TAFD) observes cosmic ray airshower, which is incident very far from the telescope. The observation does not take place in overcast night. However, the cloud status changes quickly and sometimes there are some isolated clouds. If the cloud is behind the airshower as viewed from the TAFD, the cloud presents no problem for airshower reconstruction. However if the cloud obscures the airshower, it does create a problem for airshower reconstruction. The problematic event can be rejected by airshower profile at reconstruction. However, the estimation of exposure with isolated cloud is difficult. And it should be affected more at higher energy event with relatively further from the telescope, which is lower statistics and more important for the ultra high energy cosmic ray physics. Therefore, to test the method for evaluating the correction of exposure, we installed stereo cloud cameras near one of FD sites. I report the status of the study of the Telescope Array Cloud Ranging Test.
Keywords: Telescope Array, indirect detection, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, atmosphere, cloud detection, exposure, air shower reconstruction
Published in RUNG: 04.10.2023; Views: 1024; Downloads: 7
.pdf Full text (5,81 MB)
This document has many files! More...

7.
FOV direction and image size calibration of Fluorescence Detector using light source on UAV
A. Nakazawa, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: In the Telescope Array (TA) experiment, we have been observing cosmic rays using a Fluorescence Detector (FD). More than 10 years have passed since we started this observation, and the accuracy of the observation has become more important than ever. We have developed the "Opt-copter" as a calibration device for the FDs. The Opt-copter is an unmanned aerial vehicle (UAV) equipped with a light source and can fly freely within the FD's field of view (FOV). In addition, the Opt-copter is equipped with a high-precision RTK-GPS, which enables it to accurately determine the position of the light source in flight. With this device, we can obtain detailed information on the optical characteristics of the FD. So far, we have reported on the configuration of the device and the analysis of the FOV direction. In this presentation, we will report on the new FOV analysis and image size analysis.
Keywords: Telescope Array, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, light source, calibration, UAV, FOV
Published in RUNG: 04.10.2023; Views: 978; Downloads: 7
.pdf Full text (7,14 MB)
This document has many files! More...

8.
Energy spectrum of cosmic rays measured using the Pierre Auger Observatory
V. Novotný, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: We present the energy spectrum of cosmic rays measured at the Pierre Auger Observatory from 6×10^15 eV up to the most extreme energies where the accumulated exposure reaches about 80 000 km^2sr yr. The wide energy range is covered with five different measurements, namely using the events detected by the surface detector with zenith angles below 60 degrees and applying different reconstruction method also above 60 degrees, those collected by a denser array, the hybrid events simultaneously recorded by the surface and fluorescence detectors, and using those events in which the signal is dominated by Cherenkov light registered by the high-elevation telescopes. In this contribution, we report updates of the analysis techniques and present the spectrum obtained by combining the five different measurements. Spectral features occurring in the wide energy range covered by the Observatory are discussed.
Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, surface detection, hybrid detection, ultra-high energy, cosmic rays, cerenkov light, energy spectrum, inclined showers
Published in RUNG: 03.10.2023; Views: 673; Downloads: 5
.pdf Full text (1,45 MB)
This document has many files! More...

9.
Study on multi-ELVES in the Pierre Auger Observatory
A. Vásquez Ramírez, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: Since 2013, the four sites of the Fluorescence Detector (FD) of the Pierre Auger Observatory record ELVES with a dedicated trigger. These UV light emissions are correlated to distant lightning strikes. The length of recorded traces has been increased from 100 μs (2013), to 300 μs (2014-16), to 900 μs (2017-present), to progressively extend the observation of the light emission towards the vertical of the causative lightning and beyond. A large fraction of the observed events shows double ELVES within the time window, and, in some cases, even more complex structures are observed. The nature of the multi-ELVES is not completely understood but may be related to the different types of lightning in which they are originated. For example, it is known that Narrow Bipolar Events can produce double ELVES, and Energetic In-cloud Pulses, occurring between the main negative and upper positive charge layer of clouds, can induce double and even quadruple ELVES in the ionosphere. This report shows the seasonal and daily dependence of the time gap, amplitude ratio, and correlation between the pulse widths of the peaks in a sample of 1000+ multi-ELVES events recorded during the period 2014-20. The events have been compared with data from other satellite and ground-based sensing devices to study the correlation of their properties with lightning observables such as altitude and polarity.
Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, UV light, multi-ELVES, lightning
Published in RUNG: 03.10.2023; Views: 845; Downloads: 4
.pdf Full text (1,25 MB)
This document has many files! More...

10.
Cosmic Ray Composition between 2 PeV and 2 EeV measured by the TALE Fluorescence Detector
T. AbuZayyad, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The Telescope Array (TA) cosmic rays detector located in the State of Utah in the United States is the largest ultra high energy cosmic rays detector in the northern hemisphere. The Telescope Array Low Energy Extension (TALE) fluorescence detector (FD) was added to TA in order to lower the detector's energy threshold, and has succeeded in measuring the cosmic rays energy spectrum down to PeV energies, by making use of the direct Cherenkov light produced by air showers. In this contribution we present the results of a measurement of the cosmic-ray composition using TALE FD data collected over a period of ∼7 years. TALE FD data is used to measure the Xmax distributions of showers seen in the energy range of 10^15.3 - 10^18.3 eV. The data distributions are fit to Monte Carlo distributions of {H, He, N, Fe} cosmic-ray primaries for energies up to 10^18 eV. Mean Xmax values are measured for the full energy range. TALE observes a light composition at the "Knee", that gets gradually heavier as energy increases toward the "Second-Knee". An increase in the Xmax elongation rate is observed at energies just above 10^17.3 eV indicating a change in the cosmic rays composition from a heavier to a lighter mix of primaries.
Keywords: Telescope Array, TALE, low energy extension, indirect detection, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, composition
Published in RUNG: 02.10.2023; Views: 824; Downloads: 5
.pdf Full text (960,82 KB)
This document has many files! More...

Search done in 0.06 sec.
Back to top