Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 71
First pagePrevious page12345678Next pageLast page
Yearlong variability of oxidative potential of particulate matter in an urban Mediterranean environment
D. Paraskevopoulou, Aikaterini Bougiatioti, Iasonas Stavroulas, T. Fang, Maria Lianou, Eleni Liakakou, Evangelos Gerasopoulos, R. Weber, Athanasios Nenes, Nikolaos Mihalopoulos, 2019, original scientific article

Abstract: The oxidative potential (OP) of fine and coarse fractions of ambient aerosols was studied in the urban environment of Athens, Greece. OP was quantified using a dithiothreitol (DTT) assay, applied to the water soluble fraction of aerosol that was extracted from 361 fine and 84 coarse mode of 24-h and 12-h filter samples over a one-year period. During the cold period, samples were collected on a 12-h basis, to assess the impact of night-time biomass burning emissions from domestic heating on OP. The chemical characteristics of aerosols were measured in parallel using an Aerosol Chemical Speciation Monitoring (ACSM) and a 7-wavelength Aethalometer. A source apportionment analysis on the ACSM data resulted in the identification of organic aerosol (OA) factors on a seasonal basis. A good correlation of OP with NO3−, NH4+, BC (Black Carbon), Organics and LV-OOA (low volatility oxygenated OA) was found during winter, revealing the importance of combustion and aging processes for OP. During the summertime, a good correlation between OP and SO4−2 and NH4+indicates its association with regional aerosol – thus the importance of oxidative aging that reduces its association with any characteristic source. Multiple regression analysis during winter revealed that highly oxygenated secondary aerosol (LV-OOA) and, to a lesser extent, fresh biomass burning (BBOA) and fossil fuel (HOA) organic aerosol, are the prime contributors to the OP of fine aerosol, with extrinsic toxicities of 54 ± 22 pmol min−1 μg−1, 28 ± 7 and 17 ± 4 pmol min−1μg−1, respectively. In summer, OP cannot be attributed to any of the identified components and corresponds to a background aerosol value. In winter however, the regression model can reproduce satisfactorily the water soluble DTT activity of fine aerosol, providing a unique equation for the estimation of aerosol OP in an urban Mediterranean environment.
Keywords: oxidative potential, reactive oxygen species, DTT assay, particulate matter, urban aerosol
Published in RUNG: 13.05.2024; Views: 129; Downloads: 0
This document has many files! More...

Field evaluation of low-cost PM sensors (Purple Air PA-II) under variable urban air quality conditions, in Greece
Iasonas Stavroulas, Georgios Grivas, Panagiotis Michalopoulos, Eleni Liakakou, Aikaterini Bougiatioti, Panayiotis Kalkavouras, Kyriaki Maria Fameli, Nikolaos Hatzianastassiou, Nikolaos Mihalopoulos, Evangelos Gerasopoulos, 2020, original scientific article

Abstract: Recent advances in particle sensor technologies have led to an increased development and utilization of low-cost, compact, particulate matter (PM) monitors. These devices can be deployed in dense monitoring networks, enabling an improved characterization of the spatiotemporal variability in ambient levels and exposure. However, the reliability of their measurements is an important prerequisite, necessitating rigorous performance evaluation and calibration in comparison to reference-grade instrumentation. In this study, field evaluation of Purple Air PA-II devices (low-cost PM sensors) is performed in two urban environments and across three seasons in Greece, in comparison to different types of reference instruments. Measurements were conducted in Athens (the largest city in Greece with nearly four-million inhabitants) for five months spanning over the summer of 2019 and winter/spring of 2020 and in Ioannina, a medium-sized city in northwestern Greece (100,000 inhabitants) during winter/spring 2019–2020. The PM2.5 sensor output correlates strongly with reference measurements (R2 = 0.87 against a beta attenuation monitor and R2 = 0.98 against an optical reference-grade monitor). Deviations in the sensor-reference agreement are identified as mainly related to elevated coarse particle concentrations and high ambient relative humidity. Simple and multiple regression models are tested to compensate for these biases, drastically improving the sensor’s response. Large decreases in sensor error are observed after implementation of models, leading to mean absolute percentage errors of 0.18 and 0.12 for the Athens and Ioannina datasets, respectively. Overall, a quality-controlled and robustly evaluated low-cost network can be an integral component for air quality monitoring in a smart city. Case studies are presented along this line, where a network of PA-II devices is used to monitor the air quality deterioration during a peri-urban forest fire event affecting the area of Athens and during extreme wintertime smog events in Ioannina, related to wood burning for residential heating.
Keywords: particulate matter, PM2.5, air quality, low-cost sensors, optical particle counter
Published in RUNG: 10.05.2024; Views: 122; Downloads: 3
URL Link to file
This document has many files! More...

Intra- and inter-city variability of ▫$PM_2.5$▫ concentrations in Greece as determined with a low-cost sensor network
Konstantinos Dimitriou, Iasonas Stavroulas, Georgios Grivas, Charalampos Chatzidiakos, Georgios Kosmopoulos, Andreas Kazantzidis, Konstantinos Kourtidis, Athanasios Karagioras, Nikolaos Hatzianastassiou, Spyros N. Pandis, 2023, original scientific article

Abstract: Measurements of PM2.5 concentrations in five major Greek cities over a two-year period using calibrated low-cost sensor-based particulate matter (PM) monitors (Purple Air PA-II) were combined with local meteorological parameters, synoptic patterns and air mass residence time models to investigate the factors controlling PM2.5 spatiotemporal variability over continental Greece. Fourteen sensors nodes in Athens, Patras, Ioannina, Xanthi, and Thermi (in the Metropolitan Area of Thessaloniki) were selected out of more than 100 of a countrywide network for detailed analysis. The cities have populations ranging from 65k to 3M inhabitants and cover different latitudes along the South-North axis. High correlations between the daily average PM2.5 levels were observed among all sites, indicating strong intra- and inter-city covariance of concentrations, both in cold and warm periods. Higher PM2.5 concentrations in all cities during the cold period were primarily associated with low temperatures and stagnant anticyclonic conditions, favoring the entrapment of residential heating emissions from biomass burning. Anticyclonic conditions were also connected to an increased frequency of PM2.5 episodes, exceeding the updated daily guideline value (15 μg m−3) of the World Health Organization (WHO). During the warm period, nearly uniform PM2.5 levels were encountered across continental Greece, independently of their population size. This uniformity strongly suggests the importance of long-range transport and regional secondary aerosol formation for PM2.5 during this period. Peak concentrations were associated mainly with regional northern air flows over Greece and the Balkan Peninsula. The use of the measurements from dense air quality sensor networks, provided that a robust calibration protocol and continuous data quality assurance practices are followed, appears to be an efficient tool to gain insights on the levels and variability of PM2.5 concentrations, underpinning the characterization of spatial and seasonal particularities and supporting real-time public information and warning.
Keywords: particulate matter, PM2.5, biomass burning, low-cost sensors, purple air PA-II, concentration weighted trajectory, potential source contribution function
Published in RUNG: 10.05.2024; Views: 122; Downloads: 2
URL Link to file
This document has many files! More...

Rolling vs. seasonal PMF : real-world multi-site and synthetic dataset comparison
Marta Via, Gang Chen, Francesco Canonaco, Kaspar Rudolf Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, 2022, original scientific article

Abstract: Abstract. Particulate matter (PM) has become a major concern in terms of human health and climate impact. In particular, the source apportionment (SA) of organic aerosols (OA) present in submicron particles (PM1) has gained relevance as an atmospheric research field due to the diversity and complexity of its primary sources and secondary formation processes. Moreover, relatively simple but robust instruments such as the Aerosol Chemical Speciation Monitor (ACSM) are now widely available for the near-real-time online determination of the composition of the non-refractory PM1. One of the most used tools for SA purposes is the source-receptor positive matrix factorisation (PMF) model. Even though the recently developed rolling PMF technique has already been used for OA SA on ACSM datasets, no study has assessed its added value compared to the more common seasonal PMF method using a practical approach yet. In this paper, both techniques were applied to a synthetic dataset and to nine European ACSM datasets in order to spot the main output discrepancies between methods. The main advantage of the synthetic dataset approach was that the methods' outputs could be compared to the expected “true” values, i.e. the original synthetic dataset values. This approach revealed similar apportionment results amongst methods, although the rolling PMF profile's adaptability feature proved to be advantageous, as it generated output profiles that moved nearer to the truth points. Nevertheless, these results highlighted the impact of the profile anchor on the solution, as the use of a different anchor with respect to the truth led to significantly different results in both methods. In the multi-site study, while differences were generally not significant when considering year-long periods, their importance grew towards shorter time spans, as in intra-month or intra-day cycles. As far as correlation with external measurements is concerned, rolling PMF performed better than seasonal PMF globally for the ambient datasets investigated here, especially in periods between seasons. The results of this multi-site comparison coincide with the synthetic dataset in terms of rolling–seasonal similarity and rolling PMF reporting moderate improvements. Altogether, the results of this study provide solid evidence of the robustness of both methods and of the overall efficiency of the recently proposed rolling PMF approach.
Keywords: particulate matter, synthetic dataset comparison, source apportionment, organic aerosols
Published in RUNG: 10.05.2024; Views: 121; Downloads: 4
.pdf Full text (2,03 MB)
This document has many files! More...

Increase in secondary organic aerosol in an urban environment : Increase in secondary organic aerosol in an urban environment
Marta Via, Maria Cruz Minguillon, Cristina Reche, Xavier Querol, Andrés Alastuey, 2021, original scientific article

Abstract: The evolution of fine aerosol (PM1) species as well as the contribution of potential sources to the total organic aerosol (OA) at an urban background site in Barcelona, in the western Mediterranean basin (WMB) was investigated. For this purpose, a quadrupole aerosol chemical speciation monitor (Q-ACSM) was deployed to acquire real-time measurements for two 1-year periods: May 2014–May 2015 (period A) and September 2017–October 2018 (period B). Total PM1 concentrations showed a slight decrease (from 10.1 to 9.6 μgm�3 from A to B), although the relative contribution of inorganic and organic compounds varied significantly. Regarding inorganic compounds, SO42- , black carbon(BC) and NH4+ showed a significant decrease from period A to B (21 %, 18% and 9 %, respectively), whilst NO3- concentrations were higher in B (8 %). Source apportionment revealed OA contained 46% and 70% secondary OA (SOA) in periods A and B, respectively. Two secondary oxygenated OA sources (OOA) were differentiated by their oxidation status (i.e. ageing): less oxidized (LO-OOA) and more oxidized (MO-OOA). Disregarding winter periods, when LO-OOA production was not favoured, LO-OOA transformation into MO-OOA was found to be more effective in period B. The lowest LO-OOA-to-MO-OOA ratio, excluding winter, was in September–October 2018 (0.65), implying an accumulation of aged OA after the high temperature and solar radiation conditions in the summer season. In addition to temperature, SOA (sum of OOA factors) was enhanced by exposure to NOx-polluted ambient and other pollutants, especially to O3 and during afternoon hours. The anthropogenic primary OA sources identified, cooking-related OA (COA), hydrocarbon-like OA (HOA), and biomass burning OA (BBOA), decreased from period A to B in both absolute concentrations and relative contribution (as a whole, 44% and 30 %, respectively). However, their concentrations and proportion to OA grew rapidly during highly polluted episodes. The influence of certain atmospheric episodes on OA sources was also assessed. Both SOA factors were boosted with long- and medium-range circulations, especially those coming from inland Europe and the Mediterranean (triggering mainly MO-OOA) and summer breeze-driven regional circulation (mainly LO-OOA). In contrast, POA was enhanced either during air-renewal episodes or stagnation anticyclonic events.
Keywords: aerosol, organic aerosol, source apportionment, PM1, particulate matter
Published in RUNG: 10.05.2024; Views: 129; Downloads: 3
.pdf Full text (4,93 MB)
This document has many files! More...

Interpretation of the CALET Electron+Positron Spectrum concerning Dark Matter Signatures
Holger Motz, Yoichi Asaoka, Saptashwa Bhattacharyya, 2019, original scientific article

Abstract: CALET (CALorimetric Electron Telescope) is in operation on the ISS since October 2015 and directly measures the electron+positron cosmic-ray spectrum up into the TeV-region with fine energy resolution and good proton rejection. Interpretations of the latest results published in [O. Adriani et al. PRL 120, 261102] regarding Dark Matter signatures are presented. Limits on annihilation and decay of Dark Matter were calculated based on an analytic parametrization of the local electron and positron spectra, including a term representing the flux from nearby pulsars as the extra electron-positron-pair source responsible for the positron excess, which is fitted to CALET data and positron flux/fraction data of AMS-02. The expected flux from Dark Matter is calculated with PYTHIA and DRAGON and added to the parametrization with increasing scale factor until reaching 95%CL exclusion, returning a limit on the annihilation cross-section or lifetime. By treating systematic uncertainties with known energy dependence as corrections to the fit function, limits were improved compared to all-random errors. Structures appear in the spectrum, which have been investigated as potential Dark Matter signatures by looking for an improvement of the fit quality with addition of flux from Dark Matter. Thereby, annihilation of ~350 GeV or decay of ~700 GeV Dark Matter to electron-positron pairs is identified as a possible explanation of a step-like structure around 350 GeV. The significance of this signature, Dark Matter explanations of other spectral features and possible astrophysical alternatives are discussed.
Keywords: Cosmic-rays, Dark Matter, CALET
Published in RUNG: 05.10.2023; Views: 798; Downloads: 5
.pdf Full text (4,04 MB)
This document has many files! More...

Expected exclusion limits to TeV dark matter from the perseus cluster with the Cherenkov Telescope Array
Rémi Adam, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: Clusters of galaxies are the largest gravitationally-bound structures in the Universe. They are composed of galaxies and gas (approximately 15% of the total mass) mostly dark matter (DM, accounts up to 85% of the total mass). If the DM is composed of Weakly Interacting Massive Particles (WIMPs), galaxy clusters represent one of the best targets to search for gamma-ray signals induced by the decay of WIMPs, with masses around the TeV scale. Due to its sensitivity and energy range of operation (from 20 GeV to 300 TeV), the Cherenkov Telescope Array (CTA) Observatory has a unique opportunity to test WIMPs with masses close to the unitarity limit. This will complement the searches for DM from other gamma-ray observatories as well as direct and collider experiments. The CTA Observatory is planning to search for gamma-ray emission, either its origin may be cosmic-ray (CR) or DM related, in the Perseus galaxy cluster during the first years of operation. In this poster, we will present the software created to perform the analysis using the ctools software and the corresponding results.
Keywords: Cherenkov Telescope Array, CTA, dark matter, standard model, dwarf spheroidal galaxies
Published in RUNG: 26.09.2023; Views: 742; Downloads: 4
.pdf Full text (1,33 MB)
This document has many files! More...

Variability studies of active galactic nuclei from the long-term monitoring program with the Cherenkov Telescope Array
G. Grolleron, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: Blazars are active galactic nuclei (AGN) with a relativistic jet oriented toward the observer. This jet is composed of accelerated particles which can display emission over the entire electromagnetic spectrum. Spectral variability has been observed on short- and long-time scales in AGN, with a power spectral density (PSD) that can show a break at frequencies below the well-known red-noise process. This break frequency in the PSD has been observed in X-rays to scale with the accretion regime and the mass of the central black hole. It is expected that a break could also be seen in the very-high-energy gamma rays, but constraining the shape of the PSD in these wavelengths has not been possible with the current instruments. The Cherenkov Telescope Array (CTA) will be more sensitive by a factor of five to ten depending on energy than the current generation of imaging atmospheric Cherenkov telescopes, therefore it will be possible with CTA to reconstruct the PSD with a high accuracy, bringing new information about AGN variability. In this work, we focus on the AGN long-term monitoring program planned with CTA. The program is proposed to begin with early-start observing campaigns with CTA precursors. This would allow us to probe longer time scales on the AGN PSD.
Keywords: Cherenkov Telescope Array, CTA, dark matter, standard model, dwarf spheroidal galaxies
Published in RUNG: 26.09.2023; Views: 837; Downloads: 7
.pdf Full text (3,48 MB)
This document has many files! More...

Search done in 0.07 sec.
Back to top