Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


121 - 130 / 215
First pagePrevious page9101112131415161718Next pageLast page
121.
Follow-up Search for UHE Photons from Gravitational Wave Sources with the Pierre Auger Observatory
P. Ruehl, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: Multimessenger astronomy has become increasingly important during the past decade. Some astronomical objects have already been successfully observed in the light of multiple messenger signals, allowing for a much deeper understanding of their physical properties. The Pierre Auger Observatory has taken part in multimessenger astronomy with an exhaustive exploration of the ultra-high-energy sky. In this contribution, for the first time, a search for UHE photons from the sources of gravitational waves is presented. Interactions with the cosmic background radiation fields are expected to attenuate any possible flux of ultra-high-energy photons from distant sources and a non-negligible background of air shower events with hadronic origin makes an unambiguous identification of primary photons a challenging task. In the analysis presented here, a selection strategy is applied to both GW sources and air shower events aiming to provide maximum sensitivity to a possible photon signal. At the same time, a window is kept open for hypothetical new-physics processes, which might allow for much larger interaction lengths of photons in the extragalactic medium. Preliminary results on the UHE photon fluence from a selection of GW sources, including the binary neutron star merger GW170817 are presented.
Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, ultra-high energy, photons, cosmic rays, anisotropy, gravitational waves, multimessenger
Published in RUNG: 29.09.2023; Views: 1789; Downloads: 7
.pdf Full text (940,08 KB)
This document has many files! More...

122.
Performance and simulation of the surface detector array of the TAx4 experiment
K. Fujisue, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The TAx4 experiment is a project to observe highest energy cosmic rays by expanding the detectionarea of the Telescope Array (TA) experiment with newly constructed surface detectors (SDs) andfluorescence detectors (FDs). New SDs are arranged in a square grid with 2.08 km spacing atthe north east and south east of the TA SD array. We use CORSIKA simulations and implementthe calibration data of the new SDs to calculate the performance of the new SDs. We comparethe data with the simulation and validate the performance of the SDs. The comparison and theperformance will be shown in the presentation.
Keywords: Telescope Array, TAx4, indirect detection, ground array, surface detection, ultra-high energy, cosmic rays, CORSIKA
Published in RUNG: 29.09.2023; Views: 1885; Downloads: 6
.pdf Full text (3,16 MB)
This document has many files! More...

123.
Science with the Global Cosmic-ray Observatory (GCOS)
Rafael Alves Batista, M. Ahlers, Pedro Assis, Markus Gottfried Battisti, J. A. Bellido, S. Bhatnagar, K. Bismark, Teresa Bister, Martina Boháčová, Serguei Vorobiov, 2023, published scientific conference contribution

Abstract: The Global Cosmic-ray Observatory (GCOS) is a proposed large-scale observatory for studying ultra-high-energy cosmic particles, including ultra-high-energy cosmic rays (UHECRs), photons, and neutrinos. Its primary goal is to characterise the properties of the highest-energy particles in Nature with unprecedented accuracy, and to identify their elusive sources. With an aperture at least a ten-fold larger than existing observatories, this next-generation facility should start operating after 2030, when present-day detectors will gradually cease their activities. Here we briefly review the scientific case motivating GCOS. We present the status of the project, preliminary ideas for its design, and some estimates of its capabilities.
Keywords: ultra-high-energy cosmic rays, UHE photons, UHE neutrinos, the Global Cosmic-ray Observatory project
Published in RUNG: 27.09.2023; Views: 2407; Downloads: 6
.pdf Full text (692,24 KB)
This document has many files! More...

124.
Outreach activities at the Pierre Auger Observatory
K.S. Caballero-Mora, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The Pierre Auger Observatory, sited in Malargüe, Argentina, is the largest observatory available for measuring ultra-high-energy cosmic rays (UHECR). The Auger Collaboration has measured and analysed an unprecedented number of UHECRs. Along with making important scientific discoveries, for example, the demonstration that cosmic rays above 8 EeV are of extragalactic origin and the observation of a new feature in the energy spectrum at around 13 EeV, outreach work has been carried out across the 18 participating countries and online. This program ranges from talks to a varied audience, to the creation of a local Visitor Center, which attracts 8000 visitors annually, to initiating masterclasses. Permanent and temporary exhibitions have been prepared both in reality and virtually. Science fairs for elementary- and high-school students have been organised, together with activities associated with interesting phenomena such as eclipses. In addition, we participate in international events such as the International Cosmic Day, Frontiers from H2020, and the International Day of Women and Girls in Science. Part of the Collaboration website is aimed at the general public. Here the most recent articles published are summarised. Thus the Collaboration informs people about work in our field, which may seem remote from everyday life. Furthermore, the Auger Observatory has been a seed for scientific and technological activities in and around Malargüe. Different outreach ventures that already have been implemented and others which are foreseen will be described.
Keywords: Pierre Auger Observatory, indirect detection, ultra-high energy, cosmic rays, outreach, open data
Published in RUNG: 26.09.2023; Views: 1666; Downloads: 6
.pdf Full text (7,94 MB)
This document has many files! More...

125.
Highlights from the Telescope Array experiment
Grigory I. Rubtsov, R. U. Abbasi, T. Abu-Zayyad, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, Jon Paul Lundquist, 2022, published scientific conference contribution (invited lecture)

Abstract: The Telescope Array (TA) is the largest cosmic ray observatory in the Northern Hemisphere. It is designed to measure the properties of cosmic rays over a wide range of energies. TA with it's low energy extension (TALE) observe cosmic-ray induced extensive air showers between 2 PeV and 100 EeV in hybrid mode using multiple instruments, including an array of scintillator detectors at the Earth's surface and telescopes to measure the fluorescence and Cerenkov light. The statistics at the highest energies is being enhanced with the ongoing construction of the TAx4 experiment which will quadruple the surface area of the detector. We review the present status of the experiments and most recent physics results on the cosmic ray anisotropy, chemical composition and energy spectrum. Notable highlights include a new feature in the energy spectrum at about 10^19.2 eV, and a new clustering of events in the direction of Perseus-Pisces supercluster above this energy. We also report on updated diffuse photon flux limits and new spectrum and composition results in the lower energy range from the TALE extension.
Keywords: Telescope Array, TALE, low energy extension, TAx4, indirect detection, hybrid detection, ground array, fluorescence detection, Cherenkov light, ultra-high energy, cosmic rays, energy spectrum, composition, anisotropy
Published in RUNG: 26.09.2023; Views: 1833; Downloads: 9
.pdf Full text (6,75 MB)
This document has many files! More...

126.
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
Baobiao Yue, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The Fluorescence Detector (FD) of the Pierre Auger Observatory has a large exposure to search for upward-going showers. Constraints have been recently obtained by using 14 years of FD data searching for upward-going showers in the zenith angle range [110◦, 180◦]. In this work, we translate these bounds to upper limits of a possible flux of ultra high energy tau-leptons escaping from the Earth into the atmosphere. Such a mechanism could explain the observation of "anomalous pulses" made by ANITA, that indicated the existence of upward-going air showers with energies above 10[sup]17 eV. As tau neutrinos would be absorbed within the Earth at the deduced angles and energies, a flux of upward-going taus could only be resulted from an unknown type of ultra high energy Beyond Standard Model particle penetrating the Earth with little attenuation, and then creating tau-leptons through interactions within a maximum depth of about 50 km before exiting. We test classes of such models in a generic way and determine upper flux limits of ultra high energy BSM particles as a function of their unknown cross section with matter.
Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detector, upward-going air showers, Beyond Standard Model particles
Published in RUNG: 26.09.2023; Views: 1909; Downloads: 8
.pdf Full text (544,10 KB)
This document has many files! More...

127.
The fitting procedure for longitudinal shower profiles observed with the fluorescence detector of the Pierre Auger Observatory
J. A. Bellido, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The Pierre Auger Observatory uses fluorescence telescopes in conjunction with ground level particle detectors to measure high-energy cosmic rays and reconstruct, with greater precision, their arrival direction, their energy and the depth of shower maximum. The depth of shower maximum is important to infer cosmic ray mass composition. The fluorescence detector is capable of directly measuring the longitudinal shower development, which is used to reconstruct the cosmic ray energy and the atmospheric depth of shower maximum. However, given the limited field of view of the fluorescence detector, the shower profile is not always fully contained within the detector observation volume. Therefore, considerations need to be taken in order to reconstruct some events. In this contribution we will describe the method that the Pierre Auger Collaboration uses to reconstruct the longitudinal profiles of showers and present the details of its performance, namely its resolution and systematic uncertainties.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, longitudinal shower profiles
Published in RUNG: 20.09.2023; Views: 2092; Downloads: 7
.pdf Full text (827,67 KB)
This document has many files! More...

128.
GCOS - The Global Cosmic Ray Observatory
Joerg R. Hoerandel, Serguei Vorobiov, Danilo Zavrtanik, 2021, published scientific conference contribution (invited lecture)

Abstract: Nature is providing particles with energies exceeding 100 EeV. Their existence imposes immediate questions: Are they ordinary particles, accelerated in extreme astrophysical environments, or are they annihilation or decay products of super-heavy dark matter or other exotic objects? If the particles are accelerated in extreme astrophysical environments, are their sources related to those of high-energy neutrinos, gamma rays, and/or gravitational waves, such as the recently observed mergers of compact objects? The particles can also be used to study physics processes at extreme energies; is Lorentz invariance still valid? Are the particles interacting according to the Standard Model or are there new physics processes? The particles can be used to study hadronic interactions (QCD) in the kinematic forward direction; what is the cross section of protons at center-of-mass energies sqrt(s) > 100 TeV? These questions are addressed at present by installations like the Telescope Array and the Pierre Auger Observatory. After the year 2030, a next-generation observatory will be needed to study the physics and properties of the highest-energy particles in Nature, building on the knowledge harvested from the existing observatories. It should have an aperture at least an order of magnitude bigger than the existing observatories. Recently, more than 200 scientists from around the world came together to discuss the future of the field of multi-messenger astroparticle physics beyond the year 2030. Ideas have been discussed towards the physics case and possible scenarios for detection concepts of the Global Cosmic Ray Observatory - GCOS. A synopsis of the key results discussed during the brainstorming workshop will be presented.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, Telescope Array, Global Cosmic Ray Observatory (GCOS) project
Published in RUNG: 13.09.2023; Views: 1760; Downloads: 7
.pdf Full text (5,89 MB)
This document has many files! More...

129.
Low-luminosity jetted AGN as particle multi-messenger sources
Anita Reimer, Margot Boughelilba, Lukas Merten, Paolo Da Vela, Jon Paul Lundquist, Serguei Vorobiov, 2023, published scientific conference contribution abstract

Abstract: The detection of cosmic gamma rays, high-energy neutrinos and cosmic rays (CRs) signal the existence of environments in the Universe that allow particle acceleration to extremely high energies. These observable signatures from putative CR sources are the result of in-source acceleration of particles, their energy and time-dependent transport including interactions in an evolving environment and their escape from source, in addition to source-to-Earth propagation. Low-luminosity AGN jets constitute the most abundant persistent jet source population in the local Universe. The dominant subset of these, Fanaroff-Riley 0 (FR0) galaxies, have recently been proposed as sources contributing to the ultra-high-energy cosmic ray (UHECR) flux observed on Earth. This presentation assesses the survival, workings and multi-messenger signatures of UHECRs in low-luminosity jet environments, with focus on FR0 galaxies. For this purpose we use our recently developed, fully time-dependent CR particle and photon propagation framework which takes into account all relevant secondary production and energy loss processes, allows for an evolving source environment and efficient treatment of transport non-linearities due to the produced particles/photons being fed back into the simulation chain. Finally, we propagate UHE cosmic-ray nuclei and secondary cosmogenic photons and neutrinos from FR0 galaxies to Earth for several extragalactic magnetic field scenarios using the CRPropa3 framework, and confront the resulting energy spectra and composition on Earth with the current observational situation.
Keywords: multi-messenger astrophysics, ultra-high-energy cosmic rays, very-high-energy gamma-rays
Published in RUNG: 13.09.2023; Views: 2236; Downloads: 8
URL Link to file
This document has many files! More...

130.
The UHECR-FR0 radio galaxy connection : a multi-messenger study of energy spectra/composition emission and intergalactic magnetic field propagation
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2023, published scientific conference contribution

Abstract: This study investigates low luminosity Fanaroff-Riley Type 0 (FR0) radio galaxies as a potentially significant source of ultra-high energy cosmic rays (UHECRs). Due to their much higher prevalence in the local universe compared to more powerful radio galaxies (about five times more than FR-1s), FR0s may provide a substantial fraction of the total UHECR energy density. To determine the nucleon composition and energy spectrum of UHECRs emitted by FR0 sources, simulation results from CRPropa3 are fit to Pierre Auger Observatory data. The resulting emission spectral indices, rigidity cutoffs, and nucleon fractions are compared to recent Auger results. The FR0 simulations include the approximately isotropic distribution of FR0 galaxies and various intergalactic magnetic field configurations (including random and structured fields) and predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. This comprehensive simulation allows for investigating the properties of the FR0 sources using observational multi-messenger data.
Keywords: ultra-high energy cosmic rays, UHECR propagation, CRPropa, active galactic nuclei, jetted AGN, FR0 radio galaxies, Pierre Auger Observatory, UHECR energy spectrum
Published in RUNG: 24.08.2023; Views: 2121; Downloads: 5
.pdf Full text (1,12 MB)
This document has many files! More...

Search done in 0.05 sec.
Back to top