Title: | Determination of biogenic amines by thermal lens microscopic detection of enzymatically released ammonium |
---|
Authors: | ID Žorž, Mojca, University of Nova Gorica, Laboratory for Environmental Research, Vipavska 13, 5000 Nova Gorica, Slovenia (Author) ID Franko, Mladen, University of Nova Gorica, Laboratory for Environmental Research, Vipavska 13, 5000 Nova Gorica, Slovenia (Author) |
Files: |
This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. |
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.12 - Published Scientific Conference Contribution Abstract |
---|
Organization: | UNG - University of Nova Gorica
|
---|
Abstract: | Biogenic amines (BAs) are organic amines present in meat, fish, dairy produce and wine due to the breakdown of amino acids, catalysed by microbial decarboxylases. BAs determination in food is important not only because of possible toxicological effects such as nausea, sweating and headache but also due to their possible role as indicators of food spoilage. Chromatographic methods are traditionally applied for determination of BAs in food [1], which usually require preliminary operations for sample pre-treatment that are laborious and difficult to automate. On the other hand, screening analytical systems provide simple, low cost and rapid analysis with the possibility of subjecting high number of samples to the screening system in a short time [2]. In this work we present a novel method for screening determination of BAs using a microfluidic system with the detection by highly sensitive thermal lens microscope (μFIA-TLM).
Four biogenic amines (putrescine, cadaverine, histamine and tyramine) were subjected to enzymatic catalysis by transglutaminase, where ammonia was released as a product of acyl transfer reaction between the peptide bound glutamine (Gln) and the amino group of BAs. Ammonia was further transformed into indophenol blue by the Berthelot reaction. The coloured product was detected in batch (static) mode in a 100 μm sample cell or in μFIA (flowing) mode in a microchip with the same optical path length. The detection was performed on a TLM system applying a solid-state diode as an excitation source (660 nm). Organic solvents were tested for signal enhancement.
For evaluation of the sensitivity and determination of LOD values (S/N = 3 basis), the NH4Cl standard solution was applied in Berthelot reaction with further detection on TLM system. The LODs for NH4+ in batch mode and in μFIA were 24 μg/L and 109 μg/L, respectively. Both LOD values are lower than the LOD achieved with conventional spectrophotometry (180 μg/L). When mixtures of the indophenol standard solutions and EtOH in the ratio of 1:1 were prepared the LOD in batch mode was improved to 3 μg/L, achieving 60-times improvement compared to spectrophotometry. |
---|
Keywords: | Biogenic amines, Thermal lens microscopy, microfluidics, translgutaminase |
---|
Year of publishing: | 2016 |
---|
Number of pages: | 23 |
---|
PID: | 20.500.12556/RUNG-2479 |
---|
COBISS.SI-ID: | 4427515 |
---|
NUK URN: | URN:SI:UNG:REP:QVUOY5YF |
---|
Publication date in RUNG: | 05.07.2016 |
---|
Views: | 6082 |
---|
Downloads: | 0 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |