Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
University of Nova Gorica
University
Study
Research
Repository of University of Nova Gorica
About
Search
Browse
Statistics
Login
Show document
A+
|
A-
|
|
SLO
|
ENG
Title:
Pocestnica
Authors:
ID
Božič, Zoran
(Author)
Files:
http://www.ventilatorbesed.com/?opcija=kom_clanki&oce=59&id=298
Language:
Slovenian
Work type:
Not categorized
Typology:
1.19 - Review, Book Review, Critique
Organization:
UNG - University of Nova Gorica
Keywords:
potopisi
,
recenzije
Year of publishing:
2009
PID:
20.500.12556/RUNG-252
COBISS.SI-ID:
1840379
ISSN:
1855-6736
UDC:
82-95
NUK URN:
URN:SI:UNG:REP:KWIYHJSQ
Publication date in RUNG:
15.10.2013
Views:
12291
Downloads:
128
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BOŽIČ, Zoran, 2009, Pocestnica. [online]. 2009. [Accessed 29 March 2025]. Retrieved from: http://www.ventilatorbesed.com/?opcija=kom_clanki&oce=59&id=298
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Person activity recognition from image sequence using deep recurrent neural networks
Person age estimation based on digital images using convolutional neural networks
Detection of single person in depth image using convolutional neural networks
Food recognition from digital images using convolutional neural networks
Recognition of human emotions on digital images using convolutional neural networks
Similar works from other repositories:
Object detection and classification in aquatic environment using convolutional neural networks
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Traffic sign recognition with deep convolutional neural networks
Iris recognition using artificial neural networks
Strengths and weaknesses of deep face recognition models
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Back