Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:Time-varying sodium absorption in the Type Ia supernova 2013gh
Authors:ID Ferretti, Raphael, Department of Physics, The Oskar Klein Centre, Stockholm University, Albanova, 106 92 Stockholm, Sweden (Author)
ID Amanullah, R., Department of Physics, The Oskar Klein Centre, Stockholm University, Albanova, 106 92 Stockholm, Sweden (Author)
ID Goobar, Ariel, Department of Physics, The Oskar Klein Centre, Stockholm University, Albanova, 106 92 Stockholm, Sweden (Author)
ID Johansson, Joel, Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 7610001 Rehovot, Israel (Author)
ID Petrushevska, Tanja, Department of Physics, The Oskar Klein Centre, Stockholm University, Albanova, 106 92 Stockholm, Sweden (Author)
Files: This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:UNG - University of Nova Gorica
Abstract:Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods. We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorptionline variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results. Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 1019 cm from the explosion. Conclusions. Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances.
Keywords:supernovae: general – supernovae: individual: SN 2013gh – dust, extinction – circumstellar matter – supernovae: individual: iPTF 13dge
Publication version:Version of Record
Year of publishing:2016
Number of pages:17
Numbering:A40, 592
PID:20.500.12556/RUNG-3567-2f8a7997-ef48-19f1-97b1-eda260356b50 New window
COBISS.SI-ID:4997115 New window
DOI:10.1051/0004-6361/201628351 New window
NUK URN:URN:SI:UNG:REP:OVKSDGLV
Publication date in RUNG:23.01.2018
Views:4410
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Astronomy and Astrophysics
Shortened title:A&A
Year of publishing:2016

Back