Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:XAS studies of Sn modified TiO2 coatings
Authors:ID Maver, Ksenija, UNG (Author)
ID Arčon, Iztok, UNG (Author)
ID Lavrenčič Štangar, Urška, UNG (Author)
Files: This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:English
Work type:Not categorized
Typology:1.12 - Published Scientific Conference Contribution Abstract
Organization:UNG - University of Nova Gorica
Abstract:Coatings based on TiO2 are extensively investigated material for the preparation of surfaces which are referred as self-cleaning. Under solar illumination these coatings catalyze pollutants degradation and enhance their removal from the surface due to photoinduced superhydrophilicity [1]. There are two main drawbacks of using pure TiO2 (anatase) as a photocatalyst; i) its band gap lies in the UVA region so it can exploit only a part of the sunlight spectrum, and ii) it has a high degree of recombination between photo generated electrons and holes on the surface. There are various strategies to improve the photocatalytic efficiency of TiO2, one of them is the modification with transition metals. Based on our previous experiences with sol-gel synthesis of low-temperature TiO2 thin films [2], we prepared a series of Sn modified TiO2 photocatalysts. As a starting material only organic (Ti and Sn alkoxide) precursors were used. The loadings of Sn cations were varied in the range of 0.05 to 20 mol.%. The coatings, deposited on glass substrates by dip-coating technique, were dried at 150 oC. In addition, another set of photocatalyst coatings was prepared by further calcination at 500 °C in air. The comparison of photocatalytic activities of Sn modified TiO2 to unmodified TiO2 showed that Sn loadings in the range of 1-10 mol.% improved photocatalytic activity up to 8 times. At lower loadings of Sn, the photocatalytic activity was improved only by 30 %. After the coatings are calcined, their photocatalytic activity was significantly reduced. The objective of the research was to examine the mechanism responsible for photocatalytic properties of Sn modified TiO2 and to to clarify the role of Sn cations in the TiO2 photocatalytic process. For this purpose, Sn and Ti K-edge XANES and EXAFS analysis was used to precisely determine the local structure and the site of incorporation of Sn cations on titania nanoparticles in the coatings. We examined the hypothesis that the solid-solid interface was a crucial structural feature that facilitates charge separation and enhances photocatalytic efficiency of titania.
Keywords:Sn, EXAFS, TiO2 fotokatalizator
Year of publishing:2018
Number of pages:1
PID:20.500.12556/RUNG-4075-66acf018-12d8-ffc9-53ed-c0114f9ff000 New window
COBISS.SI-ID:5220347 New window
NUK URN:URN:SI:UNG:REP:2PVTK2I9
Publication date in RUNG:12.09.2018
Views:3416
Downloads:0
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a monograph

Title:Book of abstracts, European Conference on X-Ray Spectrometry - EXRS-2018
Editors:Matjaž Kavčič
Place of publishing:Ljubljana
Year of publishing:2018
ISBN:978-961-264-126-9
Conference organizer:Inštitut Jožef Stefan

Back