Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with aerosol mass spectrometry : results from the CENICA Supersite
Authors:ID Salcedo, Dara (Author)
ID Onasch, T. B. (Author)
ID Džepina, Katja (Author)
ID Canagaratna, M. R. (Author)
ID Zhang, Qi (Author)
ID Huffman, J. A. (Author)
ID DeCarlo, P. F. (Author)
ID Jayne, J. (Author)
ID Mortimer, P. (Author)
ID Worsnop, D. (Author)
Files: This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:English
Work type:Unknown
Typology:1.01 - Original Scientific Article
Organization:UNG - University of Nova Gorica
Abstract:An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite, during the Mexico City Metropolitan Area field study (MCMA-2003) from 31 March-4 May 2003 to investigate particle concentrations, sources, and processes. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 mu m (NR-PM1) with high time and size-resolution. In order to account for the refractory material in the aerosol, we also present estimates of Black Carbon (BC) using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE) analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a PM2.5 Tapered Element Oscillating Microbalance (TEOM), and a PM2.5 DustTrak Aerosol Monitor) show that the AMS + BC + soil mass concentration is consistent with the total PM2.5 mass concentration during MCMA-2003 within the combined uncertainties. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents, on average, 54.6% (standard deviation sigma=10%) of the mass, with the rest consisting of inorganic compounds ( mainly ammonium nitrate and sulfate/ammonium salts), BC, and soil. Inorganic compounds represent 27.5% of PM2.5 (sigma=10%); BC mass concentration is about 11% (sigma=4%); while soil represents about 6.9% (sigma=4%). Size distributions are presented for the AMS species; they show an accumulation mode that contains mainly oxygenated organic and secondary inorganic compounds. The organic size distributions also contain a small organic particle mode that is likely indicative of fresh traffic emissions; small particle modes exist for the inorganic species as well. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The aerosol seems to be neutralized most of the time; however, there were some periods when there was not enough ammonium to completely neutralize the nitrate, chloride and sulfate present. The diurnal cycle and size distributions of nitrate suggest local photochemical production. On the other hand, sulfate appears to be produced on a regional scale. There are indications of new particle formation and growth events when concentrations of SO2 were high. Although the sources of chloride are not clear, this species seems to condense as ammonium chloride early in the morning and to evaporate as the temperature increases and RH decreases. The total and speciated mass concentrations and diurnal cycles measured during MCMA-2003 are similar to measurements during a previous field campaign at a nearby location.
Keywords:aerosol mass-spectrometer, atmospheric aerosol, atmospheric chemistry, atmospheric physics
Year of publishing:2006
Number of pages:str. 925-946
Numbering:Vol. 6, iss. 4
PID:20.500.12556/RUNG-6466 New window
COBISS.SI-ID:59112451 New window
UDC:54
ISSN on article:1680-7316
DOI:10.5194/acp-6-925-2006 New window
NUK URN:URN:SI:UNG:REP:AQVVJK1F
Publication date in RUNG:12.04.2021
Views:2088
Downloads:0
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Atmospheric chemistry and physics
Shortened title:Atmos. chem. phys.
Publisher:European Geophysical Society, Copernicus GmbH
ISSN:1680-7316
COBISS.SI-ID:23215911 New window

Back