Repository of University of Nova Gorica

Show document
A+ | A- | Help | SLO | ENG

Title:Thermal diffusivity of molybdenum oxide nanowire film: a photothermal beam deflection study
Authors:ID Swapna, Mohanachandran Nair Sindhu, UNIVERSITY OF KERALA (Author), et al.
Files: This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:UNG - University of Nova Gorica
Abstract:The paper reports the preparation of thin film with MoO3 nanowires (NWs) by the doctor blade method and the study of its thermal diffusivity (α) by the sensitive photothermal beam deflection (PTD) method. When the Field Emission Scanning Electron Microscopic and Atomic Force Microscopic analysis unveil its morphology as NW bundles, the X-ray diffraction analysis reveals the structure to be orthorhombic. The NWs formed are of diameter ~ 20 nm and length up to 5 μm. The standardization of the transverse PTD setup is done by determining the value of α of iron, which agrees well with literature reports. The thermal diffusivity of MoO3 NW film is obtained as 0.0036 cm2 /s, which is 9.48% of its bulk counterpart. The reduction in the thermal diffusivity of NW makes it a suitable candidate for thermoelectric applications.
Keywords:Nanowires Molybdenum oxide Photothermal beam deflection Thermal diffusivity
Year of publishing:2021
Number of pages:6
Numbering:3, 139
PID:20.500.12556/RUNG-7460 New window
COBISS.SI-ID:113757187 New window
DOI:https://doi.org/10.1016/j.optlastec.2021.106993 New window
NUK URN:URN:SI:UNG:REP:S3HU2PBL
Publication date in RUNG:04.07.2022
Views:1105
Downloads:0
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Optics and Laser Technology
Year of publishing:2021

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:04.07.2022

Back