Title: | Correlation between FeCl2 electrolyte conductivity and electrolysis efficiency |
---|
Authors: | ID Luin, Uroš, Materials Research Laboratory, University of Nova Gorica, Vipavska 11c 5270 Ajdovščina, Slovenia (Author) ID Valant, Matjaž, Materials Research Laboratory, University of Nova Gorica, Vipavska 11c 5270 Ajdovščina, Slovenia (Author) ID Arčon, Iztok, Department of Low and Medium Energy Physics, J. Stefan Institute, Jamova 39, SI-1001 Ljubljana, Slovenia (Author) |
Files: |
This document has no files that are freely available to the public. This document may have a physical copy in the library of the organization, check the status via COBISS. |
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.12 - Published Scientific Conference Contribution Abstract |
---|
Organization: | UNG - University of Nova Gorica
|
---|
Abstract: | The electrolysis efficiency is an important aspect of the Power-to-Solid energy storage technology (EST) based
on the iron chloride electrochemical cycle [1]. This cycle employs an aqueous FeCl2 catholyte solution for the
electro-reduction of iron. The metal iron deposits on the cathode. The energy is stored as a difference in the
redox potential of iron species. Hydrogen, as an energy carrier, is released on demand over a fully controlled
hydrogen evolution reaction between metallic Fe0 and HCl (aq) [1]. Due to these characteristics, the cycle is
suitable for long-term high-capacity and high-power energy storage. In a previous work [2] we revealed that
the electrolyte conductivity linearly increases with temperature. Contrary, the correlation between the
electrolyte concentration and efficiency is not so straightforward. Unexpectedly small efficiency variations were
found between 1 and 2.5 mol dm-3 FeCl2 (aq) followed by an abrupt efficiency drop at higher concentrations.
To explain the behavior of the observed trends and elucidate the role of FeCl2 (aq) complex ionic species we
performed in situ X-ray absorption studies. We made a dedicated experimental setup, consisting of a tubular
oven and PMMA liquid absorption cell, and performed the measurements at the DESY synchrotron P65
beamline. The XAS investigation covered XANES and EXAFS analyses of FeCl2 (aq) at different
concentrations (1 - 4 molL-1) and temperatures (25 - 80 °C). We found that at low temperature and low FeCl2
concentration the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33
(±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å [3]. The structure of the ionic complex
gradually changes with an increase in temperature and/or concentration. The apical water molecule is
substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the single charged
Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well
correlates with the existing conductivity models [3].
[1] M. Valant, “Procedure for electric energy storage in solid matter. United States Patent and
Trademark Office. Patent No. US20200308715,” Patent No. US20200308715, 2021.
[2] U. Luin and M. Valant, “Electrolysis energy efficiency of highly concentrated FeCl2 solutions
for power-to-solid energy storage technology,” J. Solid State Electrochem., vol. 26, no. 4, pp.
929–938, Apr. 2022, doi: 10.1007/S10008-022-05132-Y.
[3] U. Luin, I. Arčon, and M. Valant, “Structure and Population of Complex Ionic Species in
FeCl2 Aqueous Solution by X-ray Absorption Spectroscopy,” Molecules, vol. 27, no. 3, 2022,
doi: 10.3390/molecules27030642. |
---|
Keywords: | Iron chloride electrochemical cycle, Power-to-Solid energy storage, XANES, EXAFS, electrical

conductivity, electrolyte complex ionic species structure and population |
---|
Year of publishing: | 2022 |
---|
PID: | 20.500.12556/RUNG-7626 |
---|
COBISS.SI-ID: | 122971139 |
---|
NUK URN: | URN:SI:UNG:REP:IU5GB92Q |
---|
Publication date in RUNG: | 26.09.2022 |
---|
Views: | 2670 |
---|
Downloads: | 0 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (1 vote) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |